期刊文献+

静荷载力作用下悬臂梁裂缝识别的小波方法 被引量:1

Crack Identification of Cantilever Beams under Static Loading by Using Continuous Wavelet Transform
下载PDF
导出
摘要 利用小波分析技术对梁结构的裂缝进行识别,采用gaus2小波对静荷载力作用下梁的挠度响应进行连续小波变换,根据小波系数模极大值位置识别裂缝位置,利用Lipschitz指数识别裂缝损伤程度.仿真实例不仅证明了方法的有效性,还着重研究了裂缝数量和位置、静荷载力大小和作用位置对Lipschitz指数的影响. The beam structures. The location of coefficients and simulation, the of load and the continuous wavelet transform (CWT) was applied to detect damages in Both the location and the damage extent of the crack were estimated. the crack can be identified by the modulus maximum of the wavelet the damages extent can be described by the Lipschitz exponent. In the influences of the crack location, the numbers of crack, the magnitude location of load to Lipschitz exponent were discussed.
出处 《汕头大学学报(自然科学版)》 2008年第3期26-31,共6页 Journal of Shantou University:Natural Science Edition
基金 广东省自然科学基金资助项目(05300906)
关键词 小波分析 Lipschitz指数 损伤识别 wavelet analysis Lipschitz exponent damage detection
  • 相关文献

参考文献4

  • 1任宜春,易伟建.基于小波分析的梁裂缝识别研究[J].计算力学学报,2005,22(4):399-404. 被引量:17
  • 2Douka E, Loutridis S, Trochidis A. Crack identification in beams using wavelet analysis[J]. International Journal of Solids and Structures, 2003(40) : 3 557-3 569.
  • 3Hong J C, Kim Y Y, Lee H C, et al. Damage detection using Lipschitz exponent by the wavelet transform: Application to vibration modes of beam[J]. International of Solid and Structures, 2002 (39): 1 803-1 816.
  • 4Zhu X Q, Law S S. Wavelet-based crack identification of bridge beam from operational deflection time history[J]. International Journal of Solids and Structures, 2006(43): 2299-2 317.

二级参考文献6

  • 1LIEW K M, WANG Q. Application of wavelet theory for crack identification in structure[J]. Journal of Engineering Mechanics, 1998,124 (2) : 152-157.
  • 2HOLI Z, NOORI M, AMAND R. St. Wavelet-based approach for structural damage detection [J].Journal of Engineeing Mechanics, 2000,126 (7) : 677-683.
  • 3LIANG R Y, FREDCHOY J H. Theoretical study of cracked-induced eigenfrequency changes on beam structures [J]. Journal of Engineering Mechanics,1992,118(2):384-397.
  • 4SUN Q. Singularity analysis using continous wavelet transform for bearing fault diagnosis [J].Mechanical Systems and Signal Processing, 2002, 16(6) : 1025-1041.
  • 5JAFFARD S. Polntwlse smoothness, two-microlocalization and wavelet coefficients [J]. Publications Matemmatiques, 1991,35: 155-168.
  • 6胡昌华 张军波 夏军.基于matlab的系统分析与设计-小波分析[M].西安:西安电子科技大学出版社,1997..

共引文献16

同被引文献15

  • 1温高峰.混凝土梁损伤识别的试验研究[J].公路交通科技(应用技术版),2009,5(3):52-54. 被引量:1
  • 2张启伟,周艳.桥梁健康监测技术的适用性[J].中国公路学报,2006,19(6):54-58. 被引量:33
  • 3范立础.桥梁工程[M].北京:人民交通出版社,2001..
  • 4陈记豪.装配式简支板桥上部结构整体性分析与损伤识别[D].西安:西安建筑科技大学,2011.
  • 5Guo H Y, Li Z L. A two-stage method to identify structural damage sites and extents by using evidence theory and micro- search genetic algorithm[J]. Mechanical Systems and Signal Processing,2009,23(3) :769-782.
  • 6Chen H P. Application of regularization methods to damage detection in large scale plane frame structures using incomplete noisy modal data[J]. Engineering Structures,2008,30( 11 ) :3219-3227.
  • 7Perera R, Huerta C, Orquln J M. Identification of damage in RC beams using indexes based on local modal stiffness [ J ]. Construction and Builcling Materials,2008,22 (8) : 1656-1667.
  • 8中华人民共和国国家标准.JTGD60-2004公路桥涵设计通用规范[S].北京:人民交通出版社,2004.
  • 9邓苗毅,任伟新.基于实测挠度、转角和曲率的细长梁分段抗弯刚度识别研究[J].实验力学,2007,22(5):483-488. 被引量:12
  • 10李上明,路新瀛.基于静态位移的简支桥梁损伤识别方法[J].甘肃科学学报,2011,23(2):75-78. 被引量:8

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部