期刊文献+

统计流形上α-先验的存在性 被引量:1

α-Prior’s Existence on Statistical Manifold
下载PDF
导出
摘要 从微分几何学的角度来讨论Jeffreys先验,并引入了先验分布的单参数族,称其为α-先验.论文给出了α-先验和Jeffreys先验之间的关系,讨论了当α≠0时在统计流形上α-先验的存在性. In this paper, the Jeffreys prior is generalized from the point of view of differential geometry A one-parameter family of prior distributions are introduced. They are named the a-priors, The a-prior is defined as the parallel volume element with respect to the u-connection, The relation between a-prior and Jeffreys prior is given. The existence of the a-prior with a≠0 on a statistical manifold is considered
出处 《五邑大学学报(自然科学版)》 CAS 2008年第3期52-56,共5页 Journal of Wuyi University(Natural Science Edition)
关键词 统计流形 a-先验 等仿射结构 a-联络 statistical manifold a-prior equiaffine structure a-connection
  • 相关文献

参考文献7

  • 1JEFFERYS H. Theory of probability [M]. Berkeley: University of California Press, 1961.
  • 2TAKEUCHI J, AMARI S. α-prior and its properties [J]. IEEE Trans Inform Theory, 2005, 51(3): 1 011-1 023.
  • 3MATSUZOE Hiroshi, TAKEUCHI Jun-ichi, AMARI Shun-ichi. Equiaffine structures on statistical manifolds and Bayesian statistics [J]. Differential Geometry and its Applications, 2006, 24: 567-578.
  • 4NOMIZU K, SASAKI T. Affine differential geometry-geometry of affine immersions [M]. Cambridge: Cambridge University Press. 1994.
  • 5SIMON U. Hypersurfaces in equiaffine differential geometry[J]. Geom Dedicate, 1984, 17: 157-168.
  • 6LAURITZEN S L. Statistical manifolds [M]//AMARI S. Differential geometry in statistical inferences. Haywar California: IMS Lecture Notes Monograph Series, 1987: 96-163.
  • 7LI A M, SIMON U, Zhao G S. Global affine differential geometry of hypersurfaces [M]. Berlin: Walter de Gruyter, 1993.

同被引文献7

  • 1LI A M, SIMON U, ZHAO G S. Global affine differential geometry of hypersurfaces [M]. Berlin: Walter de Gruyter, 1993.
  • 2POGORELOV A V. The Minkowski multidimensional problem [M]. Washington D C: V H Winston & Sons, 1978: 39.
  • 3SIMON U. Affine differential geometry [M]//Handbook of differential geometry. Horth-Holland, Amsterndam: Elsevier Science, 2000: 905-961.
  • 4CHERN S S. Affine minimal hypersurfaces [M]//Minimal submanifolds and geodesics. Tokyo: KaigaiPublications, 1978, 17-30.
  • 5LI A M, JIA F. Euclidean complete affine surfaces with constant affine mean curvature[J]. Annals of Global Analysis and Geometry, 2003, 23: 83-304.
  • 6LI A M, JIA F. A Bernstein property of affine maximal hypersurfaces[J]. Annals of Global Analysis and Geometry, 2003, 23: 359-372.
  • 7CALABI Eugenio. Improper affine hyperspheres of convex type and a generalization of a theorem by K Jogens[J]. Michigan Math, 1958, 5: 105-126.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部