期刊文献+

极小k-连通图中的k-可收缩边

k-Contractible Edge in Minimally k-Connected Graph
下载PDF
导出
摘要 Ando证明了如果G是极小的k-连通图,且G中不含有K1+C4,若对于V(G)中的任意一个k度点x,与x关联的边中都存在一条不在三边形中的边,那么G中含有k-可收缩边.改进这个结果得出结论:如果G是极小的k-连通图,且不含图P,若G中任一k度点x,都存在与x关联的不在三边形中的边,那么G中有k-可收缩边. Ando proved that in a minimally k - connected graph G which does not contain a K1 + C4, if for any vertex x ∈ V(G) of degree k, there exists and edge incident with x which is not contained any triangle, then G has a k - contractible edge. In this paper we obtain the result: : in aminimally k - connected graph G which does not contain a P , if for any vertex x ∈ V(G) of degree k. There exists an edge incident with x which is not contained in any triangle, then G has a k -contractible edge.
出处 《菏泽学院学报》 2008年第2期18-20,36,共4页 Journal of Heze University
关键词 极小k-连通图 k-可收缩边 H—free minimally k - connected graph k - contractible edge H - free
  • 相关文献

参考文献2

  • 1Yoshimi Egawa,Hikoe Enomoto,Akira Saito. Contractible edges in triangle-free graphs[J] 1986,Combinatorica(3):269~274
  • 2W. Mader. Ecken vom Gradn in minimalenn-fach zusammenh?ngenden Graphen[J] 1972,Archiv der Mathematik(1):219~224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部