摘要
在L-闭包空间中给出了βc-开集、Lα-βc-开覆盖的概念,引入了βc-紧集和βc-紧空间。证明它保持了L-拓扑空间中的主要结论:如闭遗传性、好的推广和弱拓扑不变性等好的性质。
In this paper, the concepts of the βc--open sets, La --βc- open cover are introduced in L--closure spaces. And βc- compact sets and βc-compact space are given. It is proved that many good properties in L- topology space are preserved, such as closely hereditary, good extension and weakly topology invariability.
出处
《模糊系统与数学》
CSCD
北大核心
2008年第4期40-43,共4页
Fuzzy Systems and Mathematics
基金
山东省自然科学基金资助项目(Y2003A01)