摘要
给出并证明格矩阵半群的Euler-Fermat公式:A(n-1)2+1=A(n-1)2+1+[n],A∈Mn(L)其中L是任意的分配格,Mn(L)是L上所有n阶矩阵构成的半群。这是布尔矩阵半群的Euler-Fermat公式的一种推广。
This paper formalizes and proves the Euler-Fermat formula for the semigroup of lattice matrices : A^(n-1)^2+1=A^(n-1)^2+1+[a],A∈Mn(L)where L is an arbitrary distributive lattice and M. (L) is the semigroup of all n X n matrices over L. It is a generalization of the Euler-Fermat formula for the semigroup of Boolean matrices.
出处
《模糊系统与数学》
CSCD
北大核心
2008年第4期58-62,共5页
Fuzzy Systems and Mathematics
基金
National Natural Science Foundation of China(60774049)
Major State Basic Research Development Program ofChina(2002CB312200)
China Postdoctoral Science Foundation(20060390033)