期刊文献+

格矩阵半群的Euler-Fermat公式(英文)

On the Euler-Fermat Formula for the Semigroup of Lattice Matrices
下载PDF
导出
摘要 给出并证明格矩阵半群的Euler-Fermat公式:A(n-1)2+1=A(n-1)2+1+[n],A∈Mn(L)其中L是任意的分配格,Mn(L)是L上所有n阶矩阵构成的半群。这是布尔矩阵半群的Euler-Fermat公式的一种推广。 This paper formalizes and proves the Euler-Fermat formula for the semigroup of lattice matrices : A^(n-1)^2+1=A^(n-1)^2+1+[a],A∈Mn(L)where L is an arbitrary distributive lattice and M. (L) is the semigroup of all n X n matrices over L. It is a generalization of the Euler-Fermat formula for the semigroup of Boolean matrices.
出处 《模糊系统与数学》 CSCD 北大核心 2008年第4期58-62,共5页 Fuzzy Systems and Mathematics
基金 National Natural Science Foundation of China(60774049) Major State Basic Research Development Program ofChina(2002CB312200) China Postdoctoral Science Foundation(20060390033)
关键词 分配格 格矩阵 Euler-Fermat公式 Distributive Lattice Lattice Matrix Euler-Fermat Formula
  • 相关文献

参考文献15

  • 1Cechlarova K, Powers of matrices over distributive lattices - a review[J].Fuzzy Sets and Systems, 2003,138:627-641.
  • 2Give'on Y. Lattice matrices[J]. Information and Control, 1964,7 : 477-484.
  • 3Han S C, Li H X. Indices and periods of incline matrices[J]. Linear Algebra Appl. ,2004,387:143-165.
  • 4Han S C, Li H X. Invertible incline matrices and Cramer's rule over inclines[J]. Linear Algebra Appl. , 2004,389:121-138.
  • 5Han S C, Li H X. Standard eigenvectors of incline matrices[J].Linear Algebra Appl. ,2004,389:235-248.
  • 6Kim K H. Boolean matrix theory and applications[M]. New York:Marcel Dekker, 1982.
  • 7Shao J Y, Guo J M. On the Euler-Fermat formula of the semigroup of the Boolean matrices[J]. J. Tongji Univ. , 1996,24(1) :50-55.
  • 8Skornyakov L A. Invertible matrices over distributive structures[J].Sibirsk. Mat. Zh. , 1986,27 (2) : 182 - 185.
  • 9Tan Y J. The semigroup of Hall matrices over distributive lattices[J]. Semigroup Forum, 2000,61(2) :303-314.
  • 10Tan Y J. On the powers of matrices over a distributive lattice[J]. Linear Algebra Appl. ,2001,336:1-14.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部