期刊文献+

弱T-余代数上的模范畴以及弱T-范畴

Module Category over Weak T-coalgebra and Weak T-category
下载PDF
导出
摘要 给出了弱T-余代数的定义,构造了其上的模结构.在弱张量范畴的基础上引入弱T-范畴的概念,最后论证弱T-余代数上的模范畴即为弱T-范畴,从而对弱T-余代数进行了更深入的刻画. The definition of weak T-coalgebra is given and modules over it is constructed. Furthermore the concept of weak T-categories on the basic of weak tensor category is intoduced. At last the module category over weak T-coalgebra is just the weak T-category is shown. Then more about the structure of the weak T-coalgebra can be obtained.
作者 张翔 王顶国
出处 《曲阜师范大学学报(自然科学版)》 CAS 2008年第1期36-38,共3页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(10671016) 山东省自然科学基金(Y2005A11)
关键词 弱T-余代数 模范畴 弱T-范畴 weak T-coalgebra module category weak T-category
  • 相关文献

参考文献7

  • 1Caenepeel S,Wang Dingguo,Yin Yanmin.Yetter-Drinfeld modules over weak Hopf algebras and the center[J].Ann Univ Ferrara-Sez Ⅶ-Sc Mat,2005,51:69-98.
  • 2Nikshyeh Dmitri.On the structure of weak hopf algebras[J].Adv Math,2002,170(2):257-286.
  • 3Nikshych Dmitri.Turaev,Invariants of Knots and 3manifolds from Quantum Groupoids[J].Topology Appl,2003,127(1-2):91-123.
  • 4Virelizier A.Hopf Group-Coalgebras[J].J Pure Appl Alg,2002,171:75-122.
  • 5Zunio M.Double construction for crossed Hopf coalgebras[J].J Algebra,2004,278:43-75.
  • 6王军昌,王顶国.弱Hopf群余模及其结构基本定理[J].北京师范大学学报(自然科学版),2006,42(4):362-366. 被引量:2
  • 7江静,王顶国.上环的若干性质在其对偶中的推广[J].曲阜师范大学学报(自然科学版),2007,33(1):17-22. 被引量:3

二级参考文献11

  • 1Turaev V. Homotopy field theory in dimension 3 and crossed group-categories[ EB/OL]. [ 2006-02-10].http://www. axiv. org/ps _ cache/math/pdf/0005/0005291. pdf
  • 2Virelizier A. Hopf Group-Coalgebras[J]. J Pure Appl Alg, 2002, 171(1):75
  • 3Bohm G, Nill F, Szlachanyi K. Weak Hopf algebras(Ⅰ) [J]. Journal of Algebra, 1999, 221:385
  • 4Abe E. Hopf Algebras [M]. Cambridge: Cambridge University Press, 1980
  • 5Sweedler M. Hopf algebra renjamin[M]. New York: [s. n. ], 1969
  • 6Anguela J A. Weak bialgebras and splittable endomorphisms[J]. Int J Math Game Theory Algebras, 2003, 13(6):521.
  • 7Brzezinski T. The structure of corings: Induction functors, Maschke-Type theorem and Frobenius and Galois-Type properties[J]. Algebras and Representation theory, 2002,(5) :389-410.
  • 8Sweedler M. The predual theorem to the Jaeobson-Bourbaki theorem[J]. Trans Amer Math Soc,1975, (213) :391-406.
  • 9Brzezinski T, Kadison L, Wisbauer R. On coseparable and Biseparable corings. In: Hopf algebras in non-commutative geometry and physics, S. Caenepeel, F. Van Oystaeyen (eds.), Lecture Notes in Pure and Applied Mathematics 239, Marcel Dekker, New York, 2004. 71-88.
  • 10Rafael M D. Separable functors Revisited[J]. Commun Algebra, 1990,(18):1445-1459.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部