摘要
讨论了素环李理想上的导子.设R是特征不为2的素环,U为平方封闭的非零李理想.当满足下列条件之一时,可得到U Z.(1)d(u)d(v)=0;(2)d(u)d(v)=u v;(3)d(u)d(v)+u v=0,对任意u,v∈U.此外,若U1,U2,…,Un是R的李理想且d1,d2,…,dn是非零导子满足d1(U1)d2(U2)…dn(Un)Z,则存在i∈{1,2,…,n}使得Ui Z.
In this paper, derivations of Lie ideals in prime rings are discussed. Let R be a prime ring of Char R≠2 and let U be a nonzero square closed Lie ideal of R, then U Z if one of the following conditions is satisfied: (1) d(u).d(v)=0; (2) d(u).d(v)=u.v; (3) d(u).d(v)d+u.v=0, for all u,v∈U. Further, if U1,U2, …,Un are Lie ideals of R and d1,d2,…, dn are nonzero derivations such that d1(U1)d2(U2)…dn(Un) Z, then there exists i ∈ {1,2,…, n } such that Ui Z.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2008年第1期51-54,共4页
Journal of Qufu Normal University(Natural Science)
关键词
素环
李理想
导子
prime ring
Lie ideal
derivation