期刊文献+

跳扩散对偶模型在带壁分红策略下的分红函数 被引量:3

Dividend Function in the Jump-Diffusion Dual Model With Barrier Dividend Strategy
下载PDF
导出
摘要 考虑了带干扰的古典风险模型的对偶模型,讨论了模型在带壁分红策略下的一些结论.通过研究过程的局部时,证明了所讨论函数的边界条件.用在没有分红策略下模型的函数,给出了期望折现分红函数的显示表达.在最后一节,对于跳服从相位分布的情形,给出了数值例子,并讨论了最优分红边界的存在性. A dual model of the perturbed classical corapound Poisson risk model under a constant div- idend barrier was considered. A new method is used in deriving the boundary condition of the equation satisfied by that expectation function, by using the local time of a related process. The expression for the expected discounted dividend function was obtained in terms of those in the corresponding perturbed corapound Poisson risk model without barrier. The special cases where the gain size is phasetype distributed is illustrated in the last section. Also the existence of the optimal dividend level was considered.
作者 李波 吴荣
出处 《应用数学和力学》 CSCD 北大核心 2008年第9期1124-1134,共11页 Applied Mathematics and Mechanics
基金 国家重点基础研究发展计划(973计划)资助项目(2007CB814905) 国家自然科学基金资助项目(10571092) 高等教育博士学科点科研基金资助项目
关键词 复合POISSON过程 扩散过程 GERBER-SHIU函数 微分积分方程 破产时 破产前余额 赤字 compound Poisson process diffusion process Gerber-Shiu function integro-differentialequation time of ruin surplus before ruin deficit at ruin
  • 相关文献

参考文献20

  • 1Gerber H U. An extension of the renewal equation and its application in the collective theory of risk [ J]. Skandinavisk Aktuarietidskrift, 1970, (3) :205-210.
  • 2Gerber H U, Landry B. On the discounted penalty at ruin in a jump-diffusion and the perpetual put option[J ]. Insurance : Mathematics and Economics, 1998,22(3) :263-276.
  • 3Chiu S N, Yin C C. The time of rain, the surplus prior to rain and the deficit at rain for the classical risk process perturbed by diffusion[J]. Insurance: Mathematics and Economics, 2003,33( 1):59- 66.
  • 4Tsai. C C L. On the discounted distribution functions of the surplus process perturbed by diffusion [ J]. Insurance: Mathematics and Economics ,2001,28(3) :401-419.
  • 5Zhang C, Wang G. The joint density function of three chaaracteristics on jump-diffusion risk process [ J]. Insurance: Mathematics and Economics ,2003,32(3) :445-455.
  • 6De Finetti B. Su un' impostazione alternativa della teoria collettiva del rischio[ A]. In: Proceedings of the Transactions of the XV International Congress of Actuaries[ CI .Vol 2. 1957,433-443.
  • 7Dickson D C M, Waters H. Some optimal dividends problems[ J]. ASTIN Bulletin, 2004, 34 ( 1 ) : 49- 74.
  • 8Gerber H U. On the probability of rain in the presence of a linear dividend barrier[ J]. Scandinavian Actuarial Journal, 1981, (2) : 105-115.
  • 9Gerber H U, Shiu E S W. Optimal dividends: analysis with Brownian motion[ J]. North American Actuarial Journal, 2004,8( 1 ) : 1-20.
  • 10Li S, Garrido J. On a class of renewal risk models with a constant dividend barrier[ J]. Insurance: Mathematics and Economics,2004, 35(3) :691-701.

同被引文献7

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部