摘要
设G=(V(G),E(G))是一个图,1≤a≤b是整数。G的一个支撑子图F称为G的一个[a,b]-因子,若对G中任意的点v∈V(G),有a≤dF(v)≤b.图G称为是[a,b]-覆盖图,若对G的每一条边,存在G的一个[a,b]-因子包含它。本文给出了一个图是[a,b]-覆盖图的度条件,推广了T.Nishimura等人得到的结果。
Let c be a graph with vertices set v(G) and edge set E(G) ,a and b be integers such that 1 ≤a≤b. A spanning subgraph F of G is called an [ a, b ] - factor of G, if a ≤ dp (v)≤ b for each v ∈ V(G). G is called [ a, b ] - covered graph if for each edge e ∈ V(G) there is an [ a, b] - factor of G containing it. A degree condition for G be an [ a, b] - covered graph is given, as a generalization of T. Nishimura's theorem. Key Words: [ a, b ] - factor; [ a, b ] - covered graph ; degree
出处
《山东农业大学学报(自然科学版)》
CSCD
北大核心
2008年第3期468-470,474,共4页
Journal of Shandong Agricultural University:Natural Science Edition