期刊文献+

基于小波域HMT模型的寻北数据去噪方法研究

Research on Data-denoising Method for North-finder Based on Wavelet-domain HMT
下载PDF
导出
摘要 提出一种基于小波域隐Markov树(HMT)模型的寻北数据去噪新方法。该方法利用HMT模型对信号小波系数的相关性进行建模,通过EM算法对信号小波域的HMT模型参数进行估计,然后进行信号去噪。对实测寻北数据进行去噪表明,该方法比用db4小波阈值法能获得更高的信噪比。 A new signal denoising method based on wavelet-domain hidden Markov tree model (HMT) was proposed, which was applied to data-denofsing for north-finder. The relativity of the wavelet coefficient was modeled by HMT, HMT parameters of signal wavelet-domain were estimated by EM algorithm, and then signal was denoised. The signal denoising results on the measured data show that HMT can obtain much higher PSNR comparing with db4 wavelet thresholding methods.
出处 《弹箭与制导学报》 CSCD 北大核心 2008年第4期245-248,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
基金 国防科技预研基金资助
关键词 小波域模型 EM算法 寻北 信号去噪 wavdet-domain hidden Markov tree model EM algorithm north-finder signal denoising
  • 相关文献

参考文献8

  • 1文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:154
  • 2M S Grouse,R D Nowak and R G Baraniuk. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transaction on Signal Processing, 1998,46 (4) :886-902.
  • 3G Fan, X-G Xia, Wavelet-based texture analysis and synthesis using hidden Markov models [J]. IEEE Transaction on Circuits and Systems, Part Ⅰ, 2003, 50(1): 106-120.
  • 4L Rabiner. A tutorial on hidden Markov model and selected application in speech recognition [J].Proc, IEEE, 1989, 77:257-285.
  • 5Ronen O, Rohlicek J R, Ostendorf M. Parameter estimation of dependence tree models using the EM algorithm [J]. IEEE Signal Processing Letters, 1995,2(8) :157-159.
  • 6Kramer S C, Sorenson H W. Bayesian parameter estimation[J]. IEEE Transactions on Automatic Control, 1988,33(2) :217-222.
  • 7Donoho D L ,John stone I M. Ideal spatial daptation via wavelet shrinkage[J]. Biometrika, 1994, 81:425-455.
  • 8Kuan D T, Sawchuk A A. Adaptive noise smoothing filter for signal dependent noise[J]. IEEE Trans. PAMI, 1985,7(2):165-177.

二级参考文献7

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部