期刊文献+

含导数项的奇异二阶周期边值问题的正解

Positive Solutions to a Second-Order Singular Periodic Boundary Value Problem with Derivative Argument
下载PDF
导出
摘要 在二阶非线性微分方程周期边值问题的基础上,利用锥映射不动点定理,讨论了带有导数项的二阶非线性周期边值问题的正解的存在性,并且允许非线性项具有奇异性这一限制条件,最后给出了解的存在性定理,还把这一结果应用于一个具体的二阶边值问题中,同时对前人的结果进行了改进和推广. On the basis of nonlinear second-order periodic boundary value problem, the paper mainly discusses the existence of positive solutions to a class of nonlinear second-order singular periodic boundary value problem with derivative argument by using Krasnoselskii fixed point theorem of cone map. The sufficient conditions for positive periodic solutions are obtained. The results are applied to a detailed example, and the traditional results are improved.
出处 《中北大学学报(自然科学版)》 CAS 2008年第4期291-296,共6页 Journal of North University of China(Natural Science Edition)
关键词 周期边值问题 正解 奇异性 periodic boundary value problem~ positive solutions singularity
  • 相关文献

参考文献2

二级参考文献16

  • 1Leela S., Monotone method for second order periodic boundary value problems, Nonlinear Anal., 1983, 7:349-355.
  • 2Nieto J. J., Nonlinear second-order peroidic boundary value problems, J. Math, Anal. Appl., 1988, 130:22-29.
  • 3Cabada A., Nieto J. J., A generation of the monotone iterative technique for nonlinear second-order periodicboundary value problems, J. Math. Anal. Appl., 1990, 151: 181-189.
  • 4Cabada A., The method of lower and upper solutions for second, third, forth, and higher order boundaryvalue problens, J. Math. Anal. Appl., 1994, 185: 302-320.
  • 5Gossez J. P., Pmari P., Periodic solutions of a second order ordinary differential equation: anecesary andsufficient condition for nonresonance, J. Diff. Equs., 1991, 94: 67-82.
  • 6Omari P., Villari G., Zandin F., Periodic solutions of lienard equation with one-sided growth restrictions, J.Diff. Equs., 1987, 67: 278-293.
  • 7Ge Weigao, On the existence of harmonic solutions of lienard system, Nonlinear Anal., 1991, 16(2): 183-190.
  • 8Mawhin J., Willem M., Multiple solutions of the periodic boundary value problem for some forced pendulumtype equations, J. Diff. Equs., 1984, 52: 264-287.
  • 9Zelati V. C., Periodic solutions of dynamical systems with bounded potential, J. Diff. Equs., 1987, 67:400-413.
  • 10Lassoued L., Periodic solutions of a second order superquadratic system with a change of sign in potential,J. Diff. Equs., 1991, 93: 1-18.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部