摘要
一个域F上的Lie代数L称为理想稠密分布的Lie代数,简称为DI-Lie代数。若对于L的任意子代数链A(?)B(?)C(这里A(?)B指的是A(?)B,且A≠B),则存在L的一个理想I使A(?)I(?)C。换句话说,在L的子代数格的任意开区间中,至少包含L的一个理想。本文给出并证明了局部有限的DI-Lie代数的结构定理。
An Lie algebra L over a field F is called Lie algebra with dense ideals,in short,DI-Lie algebra.If for any chain of subalgebra of L,ABC(where AB meansthat AB, but BC),there exists an ideal I of L such that AIC.In otherwords,in the lattice of subalgebras of L every open interval contains at least one idealof L.In this paper the structure theoremes of locally finite DI-Lie algebra arestated and proved.
出处
《湖南师范大学自然科学学报》
CAS
1990年第1期1-4,共4页
Journal of Natural Science of Hunan Normal University
关键词
李代数
子代数
理想
DI-李代数
Lie algebra
subalgebra
ideal(mathematics)
localization/DILie algebra