摘要
本文沿用H.Brezis在《单边问题》中提出的方法,引进“加权强迫性条件”和“相对一致李普希兹条件”,证明了一类具有任意增长阶的拟线性椭圆型变分不等式的属于W^(1,m)(Ω,R^N)(m≥2)类广义解的W^(2,m)(Ω,R)类正则性,推广了M.Cocu和A.Radoslovescu的结果。
In this paper,by using the method proposed by H.Brezis and introducing“Weighted Coercive”and“Related uniformally Lipschitz”conditions,we haveextended the results of Brezis'and proved that the weak solutions belonging toW^(1,m)(Ω,R^N)to a class of quasilinear elliptic variational inequality with anygrowth order belong to the space W^(2,m)(Ω,R^N),where m≥2.
出处
《湖南师范大学自然科学学报》
CAS
1990年第1期10-17,60,共9页
Journal of Natural Science of Hunan Normal University
关键词
变分不等式
广义解
正则性
椭圆型
variation(mathematics)
inequality
weak solution
regularity
elliptic variational inequations