期刊文献+

基于粗糙集和神经网络集成的贷款风险5级分类 被引量:4

Five-category classification of loan risk based on integration of rough sets and neural network
下载PDF
导出
摘要 建立了粗糙集与神经网络集成的贷款风险5级分类评价模型,该模型首先利用自组织映射神经网络离散化财务数据并应用遗传算法约简评价指标;基于最小约简指标提取贷款风险5级分类判别规则以及对BP神经网络进行训练;最后使用粗糙集理论判别与规则库匹配的检验样本风险等级,使用神经网络判别不与规则库任何规则匹配的检验样本风险等级.利用贷款企业数据库698家5级分类样本进行实证研究,结果表明,粗糙集与神经网络集成的判别模型预测准确率达到82.07%,是一种有效的贷款风险5级分类评价工具. An integrated model of rough set and neural network for five-category classification of loan risk is proposed. The financial data are discretized by using the self-organizing mapping neural network; and the evaluation indices are reduced without information loss through a genetic algorithm. The reduced indices are used to develop the rules for the five-category classification of loan risk, and to train the neural network. The rough set theory is used to determine the category for the test sample which matches all rules in the rule-base. The neural network is applied to separate those test samples which do not match any one rule in the rule-base. 698 loan firms of five-category are selected as test samples. The prediction accuracy of the integrated model combining rough sets and neural network is 82.07%. This verifies the effectiveness of our approach.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第4期759-763,共5页 Control Theory & Applications
基金 国家自然科学基金(70171005) 国家十五攻关项目(2001BA102A06-07-01).
关键词 粗糙集理论 神经网络 贷款风险 分类 rough set theory neural network loan risk classification
  • 相关文献

参考文献7

  • 1ALTMAN E I, HALDEMAN R C, NARAYANAN P. Zeta analysis:a new model to identify bankruptcy risk of corporations[J]. Journal of Banking and Finance, 1977, 1(1): 29- 54.
  • 2DAN M C, MARK G R. A comparative analysis of current credit risk models [J]. Journal of Banking and Finance, 2000, 24(1): 59- 117.
  • 3OHLSON J. Financial rations and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research, 1980, 18(1): 109 - 130.
  • 4王春峰,万海晖,张维.基于神经网络技术的商业银行信用风险评估[J].系统工程理论与实践,1999,19(9):24-32. 被引量:193
  • 5BEYNON M J, PEEL M J. Variable precision rough set theory and data discretisation: an application to corporate failure prediction[J]. The International Journal of Management Science, 2001, 29(6): 561 - 576.
  • 6陶志,许宝栋,汪定伟,李冉.基于遗传算法的粗糙集知识约简方法[J].系统工程,2003,21(4):116-122. 被引量:71
  • 7AHN B S, CHO S, KIM C. The integrated methodology of rough set theory and artificial neural network for business failure prediction[J]. Expert Systems with Applications, 2000, 18(2): 65 - 74.

二级参考文献13

  • 1Pawlak Z. Rough sets-theoretical aspects of reasoning about data[M]. Dordrecht :Kluwer Academic Publishers,1991:9-30.
  • 2Pawlak Z. Rough set theory and its application to data analysis[J]. Cybernetics and Systems, 1998,29(9):661-668.
  • 3Hu X H. Mining knowledge rules from databases-a rough set approach[A]. Proceedings of IEEE International Conference on Data Engineering[C]. Los Alamitos,1996:96-105.
  • 4Wang S K M ,Ziarko W. On optimal decision rules in decision tables[J]. Bulletin of Polish Academy of Sciences,1985,33(6):693-676.
  • 5Duntsch I,Gediga G. Statistical evaluation of rough set dependency analysis[J]. International Journal of Human-Computer Study, 1997,46(5) : 589- 604.
  • 6世界银行.新兴市场经济中的商业银行[M].北京:中国财政经济出版社,1994..
  • 7曾国坚,银行风险论,1995年
  • 8世界银行,新兴市场经济中的商业银行,1994年
  • 9施鸿宝,神经网络及其应用,1993年
  • 10张尧庭,多元统计分析引论,1982年

共引文献260

同被引文献47

引证文献4

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部