期刊文献+

基于支持向量机的虹膜图像实时预评估算法 被引量:1

Iris Image Algorithm for Real-Time Pre-Estimation Based on SVM
下载PDF
导出
摘要 实际的虹膜识别系统会遇到因为各种原因产生的不同类型的坏样本图像,如果它们进入系统的识别进程,常常会增加系统的注册失败率,也会导致定位或者识别的错误。而现有的图像质量评估方法是在完成虹膜定位或者粗定位之后,根据虹膜部分的清晰度和分辨率来判定是否为坏样本。因此实际上只能处理部分类型的坏样本,而且计算耗费大。详细分析了坏样本产生的原因和特点,提出了一种基于支持向量机联合评估网络的实时预评估方法,在定位或粗定位开始之前,检测暂时存储的样本图像,根据预评估网络的输出结果来决定是进入下一步处理还是重新采集。结果表明,该方法可以检测出大部分类型的坏样本,检测速度快,而且检测的错误率相当低,能够满足实时虹膜识别系统的评估实时性和准确性的要求。 There exist frequently different types of bad sample images in an iris identification application system. When these bad images are imported into the identification process, generally it results in increased enrollment failure rate and localization errors or identification errors. According to the articulation and resolution of the iris part, previous image quality evaluation methods estimate whether an image is a bad or not after having calculated the iris location of an input image. So, only part of bad samples can be handled, and it is time-consuming. The reasons and characteristics that bad sample images were analyed. A real-time pre-estimation method for supporting vector machine's associated estimation network was proposed. Before the localization or rough localization process, sample images temporarily saved in memory are detected. According to the output results from pre-estimation network, the system determines re acquisition or to turn into the next step. The experimental result shows that the method can detect most types of the bad sample images. Detection speed is fast and error rate is comparatively low. The method can satisfy the pre estimation requirements of a real time iris identification system.
作者 王维民 佟贺
出处 《辽宁石油化工大学学报》 CAS 2008年第3期56-60,共5页 Journal of Liaoning Petrochemical University
关键词 图像预评估 实时虹膜识别系统 支持向量机联合评估网络 坏样本 Image pre--estimation Real time iris identification system SVM associated pre-estimation network Bad-image
  • 相关文献

参考文献11

  • 1Jain A K, Pankanti S, Prabhakar S, et al. Biometrics: a grand challenge[C]//Proceedings of international conference on pattern recognition, Cambridge, MA:MIT Press, 2004.
  • 2Carmen S A. NIST report to the United States Congress. Summary of NIST tandards for biometric accuracy, tamper resistance and interoperabiity [R/OL]. [2001 - 11 - 01]. [2008- 04- 03]. ftp: //sequoyah. nist. gov/pub/ nist_internal _reports/ NISTAPP_Nov02. pdf.
  • 3何家峰,叶虎年,叶妙元.虹膜图象质量评价的研究[J].中国图象图形学报(A辑),2003,8(4):387-391. 被引量:8
  • 4艾志强,纪玉波,任洪海.一种基于小波变换的图像盲水印算法[J].辽宁石油化工大学学报,2005,25(2):69-73. 被引量:5
  • 5Daugman J. Iris recognition: current state of the art[R]. The ASI'04 in Hong Kong, P. R. China, [S. L. ] :Academic Press 2004- 12.
  • 6Chapelle O, Vapnik V. Model selection for support vector machines [M]. Cambridge, MA:MIT Press,2000.
  • 7Eberhart R C,Dbbins R W. Neural network PC tools[M]. [S. L. ] :Academic Press, 1990.
  • 8Webb A R. Statistical pattern recognition[M].[S. L. ] . JohnWiley & Sons, Ltd. , 2002.
  • 9Lippmann R P. Pattern classification using neutral networks[J]. IEEE Comm. Magazine, 1989,69(8):47-64.
  • 10CBSR. Iris database 1.0 of CASIA[DB/OL].[2006-05-01]. [2008-04-01]http://www. sinobiometircs. com.

二级参考文献16

  • 1Liu R Z,Tan T N. Watermarking for digital images[A]. In: Proc. of ICIP'98[C]. Chicago,USA 1998,2:944- 947.
  • 2Van Schyndel R, Tirkel A, Osborne C. A digital watermark[A]. In: Proc. of the IEEE on international conference on image processing[C]. Austin, Texas, USA: IEEE press, 1994:86-90.
  • 3Pereira S, Pun T. Robust template matching for affine resistant image watermarks [ J ]. IEEE trans. on image processing 2000,9(6): 1123 - 1129.
  • 4Cox I J,Miller M L,Bloom J A.Digital watermarking[M].王颖,黄志蓓译.北京:电子工业出版社,2003.
  • 5Watson A B, Yang G Y, Solomon J A, et al. Visibility of wavelet quantization noise [ J ]. IEEE Transactions on image processing, 1997,16(8) :1164 - 1174.
  • 6NIU Xia- mu, LU Zhe- ming, SUN Sheng- he. Digital watermarking of still images with gray- level digital watermarks [ J ]. IEEE trans. on consumer electronics, 2000,46 ( 1 ): 137 - 145.
  • 7KutterM, PetitcolasFAP. A fair benchmark for image watermarking system[J]. Proc. of SPIE, 1999,3657:219-239.
  • 8Zhang Guang Hua. Method of selecting the best enroll image for personal Identification[P]. US Patent : 597494, 1999-11-02.
  • 9McHugh, James Timothy, Lee, et al. Handheld iris imaging apparatus and method[P]. US Patent: 6289113, 2001-09-11.
  • 10Daugman J G. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Trans. on PAMI.1993,15(11) :1148-1161.

共引文献11

同被引文献16

  • 1Ma L, Wang Y H, Tan T N. Iris recognition using circular symmetric filters[C]//Proceedings of the 16th international conference on pattern recognition. Los Alamitos, CA:[s. n.], 2002.
  • 2Lim S, Lee K, Byeon O, et al. Efficient iris recognition through improvement of feature vector and classifier [J].Journal of electronics and telecommunications research institute, 2001, 23 (2):61 - 70.
  • 3Tisse C, Martin L, Torres L, et al. Person identification technique using human iris recognition[C]//Proceedings of the 15th international conference on vision interface. Calgary: Springer,2002.
  • 4Peik S L, Hong T E, Zhang D, et al. Individual recognition based on human iris using fractal dimension approach[C]//Proceedings of international conference on hiometric authentication. Hong Kong:Springer,2004.
  • 5Chaudhuri B B, Sarkar N. Texture segmentation using fractal dimension [J].IEEE transactions on pattern analysis and machine intelligence, 1995, 17(1) :72-77.
  • 6Campbell C, Bennett K P. Support vector machines.. Hype or hallelujah?[J].SIGKDD explorations, 2000,2 (2) : 1-13.
  • 7Chapelle O, Vapnik V, Model selection for support vector machines[M]. Cambridge, MA: MIT press,2000.
  • 8Joachims T. Estimating the generalization performance of an SVM efficiently [C]//Proceedings of the international conference on machine learning. San Mateo: Morgan kaufman,2000.
  • 9Flom L, Safir A. Iris recognition system. US,4641349[P], 1987-04-1.
  • 10Adler F H. Adler's physiology of the eye[J]. St. louie, mosby, 1992.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部