期刊文献+

2DPCA-ICA算法在人脸识别中的应用 被引量:2

Applications of 2DPCA-ICA in face recognition
下载PDF
导出
摘要 传统独立元分析(Independent Component Analysis,ICA)用于人脸识别首先是将人脸图像矩阵转换成向量求白化矩阵,然后利用快速固定点算法求分离矩阵,获得人脸图像独立基子空间,从而实现人脸识别。二维主元分析(Two-dimensional Principle Component Analysis,2DPCA)无须将人脸图像矩阵转换成向量,直接利用二维人脸图像矩阵求协方差矩阵,其特征值与特征向量的计算得到简化。本文结合2DPCA与ICA算法的特点,提出2DPCA-ICA人脸识别算法。该方法通过2DPCA算法计算白化矩阵;接着利用ICA算法获得人脸图像的独立元;然后构造独立基子空间;最后依据测试样本在独立基子空间上的投影特征实现人脸识别。基于ORL与Yale人脸数据库的实验结果表明,2DPCA-ICA算法正确识别率与识别效率均高于PCA-ICA算法与2DPCA算法,是一种有效的人脸识别方法。 In face recognition traditional Independent Component Analysis (ICA) is to convert face image matrix into vector to find whitened matrix, and separate matrix is solved by way of Fast ICA. Thus independent basis subspace of face image is obtained, and face recognition is realized. Two-dimensional Principle Component Analysis (2DPCA) is used to compute covariance matrix directly according to two-dimensional matrix of face image, which is not be transformed into vector, and computation of eigenvalues and eigenvectors are predigested. Combined with the characteristics of 2DPCA and ICA, a novel method for 2DPCA-ICA in face recognition is presented in this paper. As opposed to PCA-ICA, whitened matrix is firstly computed through 2DPCA, and independent components of face image are obtained. Then independent basis subspace is constructed. Finally, face recognition is finished using projection features of test sample on independent basis subspace. Experimental results on ORL and Yale face databases show that 2DPCA-ICA has the advantages over PCA-ICA and 2DPCA in correct recognition rate and recognition efficiency, and is valid in face recognition.
出处 《电路与系统学报》 CSCD 北大核心 2008年第4期24-28,共5页 Journal of Circuits and Systems
基金 广东省自然科学基金项目(032356) 北京大学视觉与听觉信息处理国家重点实验室开放课题基金项目(0505)
关键词 二维主元分析 独立元分析 人脸识别 2DPCA-ICA 2DPCA ICA face recognition 2DPCA-ICA
  • 相关文献

参考文献10

  • 1BARTLETTMS. Face image analysis by unsupervised learning and redundancy reduction [D]. PH.D Thesis of University of California, 1998. 27-37.
  • 2甘俊英,张有为,毛士艺.自适应主元提取算法及其在人脸图像特征提取中的应用[J].电子学报,2002,30(7):1013-1016. 被引量:18
  • 3Jian Yang, David Zhang. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
  • 4Liu C. Enhanced Independent Component Analysis of Gabor Features for Face Recognition [J]. IEEE Transactions on Neutral Networks, 2003, 14: 919-928.
  • 5Pong C. Yuen, J. H. Lai. Face Representation Using Independent Component Analysis [J]. Pattern Recognition, 2002, 35: 1247-1257.
  • 6张燕昆,刘重庆.基于核独立成分分析的人脸识别[J].光学技术,2004,30(5):613-615. 被引量:6
  • 7FASTICA Matlab Toolbox [DA/OL]. http://www.cis.hut.fi/projects/ica/fastica/
  • 8HAVARINEN A., Oja E. Independent Component Analysis: Algorithm and Applications [J]. Neural Networks, 2000, 13(4-5): 411-430.
  • 9Qiong Yang, Xiaoou Tang. Recent Advances in Subspace Analysis for Face Recognition. Sinobiometrics [Z]. LNCS 3338, 2004. 275-287
  • 10刘直芳,游志胜,王运琼.基于PCA和ICA的人脸识别[J].激光技术,2004,28(1):78-81. 被引量:28

二级参考文献14

  • 1[1]BARTLETT M S.Face image analysis by unsupervised learning and redundancy reduction. Ph.D Thesis of University of California,1998.27~37.
  • 2[2]SIROVICH L,KIRBY M.J O S A,1987,4(3):519~524.
  • 3[3]TURK M A,PENTLAND A P.J Cognitive Neurosci,1994,3(1):71~86.
  • 4[4]COMON P.Signal Processing,1994,36(3):287~314.
  • 5[5]HYVARINEN A.IEEE Trans on Neural Networks,1999,10(3):626~634
  • 6[1]Chellappa R, Wilson C L, Sirohry S. Human and machine recognition of faces: a survy[J]. Proceedings of the IEEE, 1995, 83(5):705-740.
  • 7[2]Turk M, Pentland A. Eigenfaces for recognition, Journal of cognitive neuroscience[J]. 1991,3(1):71-86.
  • 8[3]Yang M H. Face recognition using kernel methods[J]. Advances in Neural Information Processing Systems, 2002,14: 215-220.
  • 9[4]Bach F R, Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002,(3):1-48.
  • 10[5]Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neural Networks, 2002,13(6):1450-64.

共引文献49

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部