摘要
利用函数f与它的对应函数f(t)=φ(f(h^(-1)(t)))之间的关系,研究了(h,φ)-凸函数和(h,φ)- Lipschitz函数的广义方向导数,得到了R^n上连续(h,φ)-凸函效的广义方向导数的有限性、上半连续性以及估值不等式.在f是R^n上的(h,φ)-凸函数的假设下,给出了f为局部(h,φ)-Lipschitz的一个充分必要条件.并讨论了R^n上的(h,φ)-凸函数和(h,φ)-Lipschitz函数的关系,得到了(h,φ)-凸函数的广义次微分的几个基本性质.
By making use of the relationship between a function and f its corresponding function f( t ) = φ(f(h^-1(t)), this paper studied some properties for generalized directional derivatives of (h,φ)-convex functions and (h, φ)-Lipschitz functions. It is shown that generalized directional derivative of a continuous (h, φ)- convex function defined on Rn is finite, upper semicontinuous and satisfies an inequality. A necessary and sufficient condition characterizing (h,φ)-Lipschitz functions f defined on Rn is obtained under the assumption that f is (h, φ)- convex. As applications, the relation between (h, φ)-convex functions and (h, φ)-Lipschitz functions, and some fundamental properties of the generalized subdifferential of (h,φ)- convex functions are presented.
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2008年第7期780-784,共5页
Journal of Beijing University of Technology
基金
北京市教育委员会科技发展计划资助项目(KM200610005014)
关键词
广义凸函数
广义Lipschitz函数
导数
次微分
次梯度
梯度
generalized convex function
generalized Lipschitz function
derivatives
subdifferential
subgradient
gradient