期刊文献+

(h,φ)-凸函数与(h,φ)-Lipschitz函数的一些广义微分性质

Properties for Generalized Differential of (h,φ)-convex Functions and (h,φ)-Lipschitz Function
下载PDF
导出
摘要 利用函数f与它的对应函数f(t)=φ(f(h^(-1)(t)))之间的关系,研究了(h,φ)-凸函数和(h,φ)- Lipschitz函数的广义方向导数,得到了R^n上连续(h,φ)-凸函效的广义方向导数的有限性、上半连续性以及估值不等式.在f是R^n上的(h,φ)-凸函数的假设下,给出了f为局部(h,φ)-Lipschitz的一个充分必要条件.并讨论了R^n上的(h,φ)-凸函数和(h,φ)-Lipschitz函数的关系,得到了(h,φ)-凸函数的广义次微分的几个基本性质. By making use of the relationship between a function and f its corresponding function f( t ) = φ(f(h^-1(t)), this paper studied some properties for generalized directional derivatives of (h,φ)-convex functions and (h, φ)-Lipschitz functions. It is shown that generalized directional derivative of a continuous (h, φ)- convex function defined on Rn is finite, upper semicontinuous and satisfies an inequality. A necessary and sufficient condition characterizing (h,φ)-Lipschitz functions f defined on Rn is obtained under the assumption that f is (h, φ)- convex. As applications, the relation between (h, φ)-convex functions and (h, φ)-Lipschitz functions, and some fundamental properties of the generalized subdifferential of (h,φ)- convex functions are presented.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2008年第7期780-784,共5页 Journal of Beijing University of Technology
基金 北京市教育委员会科技发展计划资助项目(KM200610005014)
关键词 广义凸函数 广义Lipschitz函数 导数 次微分 次梯度 梯度 generalized convex function generalized Lipschitz function derivatives subdifferential subgradient gradient
  • 相关文献

参考文献17

二级参考文献14

  • 1盛保怀,刘三阳.THE OPTIMALITY CONDITIONS OF NONCONVEXSET-VALUED VECTOR OPTIMIZATION[J].Acta Mathematica Scientia,2002,22(1):47-55. 被引量:2
  • 2王香柯.一类(h,)—— 意义下非光滑规划解的充分条件[J].青岛大学学报(工程技术版),1996,11(1):51-57. 被引量:8
  • 3Avriel M. Nonlinear Programming : Analysis and Method[M]. New Jersey:Prentice- Hall, Englewood Cliffs, 1976.
  • 4Bazaraa M S and Shetty C M. Nonlinear Programming:Theory and Algorithms[M], New York:John Wiley & Sons, 1979.
  • 5Rockafellar R T. Convex Analysis[ M]. Princeton Press, New Jersey, 1970.
  • 6Avriel M.Nonlinear Programming: Analysis and Method,1976.
  • 7HANSON M A.Invexity and the Kuhn-Tucker Theorem[J],1999.
  • 8Weir T;Mond B.Pre-invex functions in multiple obective optimization,1988.
  • 9Osuna-Gomez R.Invex Functions and Generalized Convexity in Multiobjective Programming[J],1998(03).
  • 10林锉云;董加礼.多目标优化的方法与理论,1992.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部