摘要
传统多元数据分析和模式识别领域一般采用向量空间模型。本文提出将多元数据从维向量空间映射到其生成的几何代数空间的升维变换方法,给出了多元数据在几何代数空间的多向量表示,并且证明了该多向量表示的完备性。最后展望了将几何代数应用于可视化模式识别的前景。
The vector space model is generally adopted in the multivariate data analysis and pattern recognition domain. In this paper, a dimension increasing transformation method, which mapping the vector space to the generated geometric algebra space, is proposed. The multi-vector representation of multivariate data in the geometric algebra space is presented and the completeness of this representation is proved. In the end, the prospect of geometric algebra applying to visual pattern recognition is outlined.
出处
《燕山大学学报》
CAS
2008年第5期393-396,共4页
Journal of Yanshan University
基金
国家自然科学基金资助项目(60605006
60474065
60304009)
关键词
向量空间
几何代数
多向量
模式识别
vector space
geometric algebra
multi-vector
pattern recognition