期刊文献+

多元数据升维变换的几何代数表示原理 被引量:3

Geometric algebra representation principle of multivariate data dimension-increasing transformation
下载PDF
导出
摘要 传统多元数据分析和模式识别领域一般采用向量空间模型。本文提出将多元数据从维向量空间映射到其生成的几何代数空间的升维变换方法,给出了多元数据在几何代数空间的多向量表示,并且证明了该多向量表示的完备性。最后展望了将几何代数应用于可视化模式识别的前景。 The vector space model is generally adopted in the multivariate data analysis and pattern recognition domain. In this paper, a dimension increasing transformation method, which mapping the vector space to the generated geometric algebra space, is proposed. The multi-vector representation of multivariate data in the geometric algebra space is presented and the completeness of this representation is proved. In the end, the prospect of geometric algebra applying to visual pattern recognition is outlined.
出处 《燕山大学学报》 CAS 2008年第5期393-396,共4页 Journal of Yanshan University
基金 国家自然科学基金资助项目(60605006 60474065 60304009)
关键词 向量空间 几何代数 多向量 模式识别 vector space geometric algebra multi-vector pattern recognition
  • 相关文献

参考文献5

  • 1Fu K S. Syntactic pattern recognition and application [M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1982.
  • 2Oleg Golubitsky. On the formalization of the evolving transformation system model [D]. Saint John, NB Canada: The University of New Brunswick, 2004.
  • 3Elzbieta Pekalska, Robert P W Duin. The dissimilarity representation for pattern recognition: foundations and applications [M]. Singapore: World Scientific, 2005.
  • 4David Hestenes. Space-Time Algebra [M]. London: Gordon & Breach, 1966.
  • 5Chris Doran, Anthony Lasenby. Geometric algebra forphysicists [M]. Cambridge: Cambridge University Press, 2003.

同被引文献16

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部