期刊文献+

附非负约束平差模型的最小二乘估计 被引量:4

Least-Squares Estimation of Nonnegative Constrained Adjustment Model
下载PDF
导出
摘要 研究了不等式约束下的平差问题,即先将不等式约束的最小二乘问题转换成凸二次规划问题,然后求其最优解。给出了几个判定最优解的充分必要条件,以及非负约束下的平差问题参数最小二乘估计的一般形式,并给出了简明的算法。模拟实例说明,此算法可以很好地应用于实际测量中的平差计算。 The inequality constrained least-squares estimation in adjustment model is studied from an entirely novel angle. Inequality constrained least-square problems are first changed to convex quadratic programming problems and then solved for the optimal solutions. The necessary and sufficient conditions on the solvability for optimization solution are given, which consequently gives the general form of least-squares estimation in adjustment model, as well as algorithm that are simple and easy to understand. A comparative calculation of a simulation example indicates that this algorithm can be applied to adjustment computation in the practical measurement.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第9期907-909,933,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40574003) 国家教育部博士点专项基金资助项目(20050533057) 湖南省自然科学基金资助项目(06JJ5131)
关键词 非负约束 最小二乘估计 平差模型 nonnegative constrains least-squares estimation adjustment model
  • 相关文献

参考文献1

二级参考文献1

共引文献11

同被引文献36

  • 1范胜林,赵伟,袁信.整周模糊度动态快速求解[J].电子科技大学学报,2005,34(1):89-93. 被引量:5
  • 2Song Yingchun, Zhu Jianjun. The Least-Squares Estimation in Adjustment Model With Some Nonnegative Constrained Parameters [J]. Survey Reviewer, 2010, 42(315): 62-71.
  • 3Xu P L, Cannon E, LachapeUe G. Mixed Integer Programming for the Resolution of GPS Carrier Phase Ambiguities[C]. IUGG95 Assembly, Boulder, CO, 1995.
  • 4Xu P L. Voronoi Cells, Probabilistic Bounds, and Hypothesis Testing in Mixed Integer Linear Models [J]. IEEE Transactions On Information Theory, 2006,7(52): 3 122-3 188.
  • 5Hassibi A, Boyd S. Integer Parameter Estimation in Linear Models with Applications to GPS [J].IEEE Transactions on Signal Processing, 1998,46 (11): 2 938-2 952.
  • 6Teunissen P J G. The Invertible GPS Ambiguity Transformations[J]. Manu. Geodaetica, 1995, 20 (6) :489-497.
  • 7Lenstra H W. Integer Programming with a Fixed Number of Variables[R]. Tech Rep 81-03 Dept Math, Univ Amsterdam, Amsterdam, The Netherlands, 1981.
  • 8Lenstra H W. Integer Programming with a Fixed Number of Variables [J]. Math Oper Res, 1983 (8) : 538-548.
  • 9Lenstra A K, Lenstra H W, Lovrasz L. Factoring Polynomials with Rational Coefficients [J]. Math Ann, 1982, 261:515-534.
  • 10Westerlund T, Pettersson F. A Cutting Plane Method for Solving Convex MINLP Problems [J]. Computers and Chemical Engineering,1995(19) : 5 131-5 136.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部