期刊文献+

基于基因表达式编程的Hammerstein模型的辨识 被引量:1

Identification of Hammerstein model based on gene expression programming
下载PDF
导出
摘要 针对辨识Hammerstein模型的传统方法需假定系统结构或阶次,且过程复杂的问题,本文将基因表达式编程技术引入Hammerstein模型辨识,做了下列工作:①证明了Hammer-stein模型的渥尔特拉核,给出了系统稳定的充分必要条件;②形式化描述了结构体和参数体等新概念;③提出基于基因表达式编程的Hammerstein模型辨识的新方法(HMI-GEP),全自动地构造模型结构和决定参数。实验结果表明:该方法简单、有效,改善了辨识性能;模型结构采用不同的形式表达,参数估计的最低准确率约为93%。 In identification of Hammerstein model, traditional methods need the pre--assumption of system structure and ranks, and the procedures are complicated. To Overcome these shortcomings, the technique of gene expression programming is applied to the identification of Hammerstein model. The main contributions of this work include: ①proving the Volterra kernel of Hammerstein model and giving the necessary and sufficient condition for the system stability; ②formalizing the new concepts of structure individual and parameter individual, etc;③ proposing a novel method to identify Hammerstein model based on gene expression programming, which can construct model structure and determine parameters automatically. Experiment results show that the proposed method is simple and efficient, which improves the identification performance. Different expressions of the model structure are adopted, and the lowest accuracy of the parameters estimation is about 93%.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第5期1114-1119,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60773169) “十一五”国家科技支撑计划(2006BAI05A01) 四川大学青年基金(06360)
关键词 计算机软件 基因表达式编程 HAMMERSTEIN 系统辨识 非线性系统 computer software gene expression programming Hammerstein system identification nonlinear system
  • 相关文献

参考文献11

  • 1Akramizadeh A, Farjami A A, Khaloozadeh Ho Nonlinear hammerstein model identification using genetic algorithm [C]// Proceedings of the 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS'02), Geelong, 2002.
  • 2Hachino T, Deguchi K, Takata H. Identification of Hammerstein model using radial basis function net- works and genetic algorithm[C]// 2004 5th Asian Control Conference, Melbourne, 2004.
  • 3林卫星,张惠娣,刘士荣,钱积新.应用粒子群优化算法辨识Hammerstein模型[J].仪器仪表学报,2006,27(1):75-79. 被引量:22
  • 4Lennart L}ung. System Identification Theory for the User[M]. Beijing: Tsinghua University Press, 2002.
  • 5Hatanaka T, Uosakl Katsuji. Hammerstein model identification method based on genetic programming [C] // Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, Korea, 2001.
  • 6Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems[J]. Complex Systems, 2001, 13(2):87-129.
  • 7Narendra K S, Gallman P G. An iterative method for the identification of nonlinear systems using a hammerstein model[J]. IEEE Trans Automat Control, 1966,11 (6) : 546-550.
  • 8Zuo Jie, Tang Chang-jie, Zhang Tian-qing. Mining predicate association rule by gene expression programming[C]//International Conference for Web Information Age 2002. Berlin: Springer-Verlag,2002.
  • 9姜弱.基于基因素表达式编程的Hammerstein模型的辨识的相关证明[EB/OL].[2007-05-06].http://teacher.swun.edu.cn/template/2004030511531710791/index.php.
  • 10Yao L, Sethares W A. Nonlinear parameter estimation via the genetic algorithm[J]. IEEE Transactions on Signal Processing, 1994, 42(4):927-935.

二级参考文献15

  • 1Shi Y, Eberhart R C. Parameter selection in particle swarm optimization[A]. Evolutionary Programming VII: Proceedings of the Seventh Annual Conferenceon Evolutionary Programming, Springer-Verlag,New York,1998;591 - 600.
  • 2Ljung L. System identification theory for the user[M]. 2nd ed. Prentice Hall PTR. ,1999.
  • 3Giannakis G B, Serpedin E. A bibliography on nonlinear system identification [J]. Signal Processing,2001,81(3):533- 580.
  • 4Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[A]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995 : 39 - 43.
  • 5Kennedy J, Eberhart R C, Shi Y. Swarm intelligence[M]. San Francisco:Morgan Kaufmann Publishers, 2001.
  • 6Koza J R.Genetic programming II:automatic discovery of reusable programs [M].MIT Press,1994.
  • 7Szpiro G G.Forecasting chaotic time series with genetic algorithms[J]. Phys Rev,1997,E 55:2557-2568.
  • 8Ferreira C.Gene expression programming:a new adaptive algorithem for solving problems[J].Complex Systems,2001,13(2):87-129.
  • 9Ferreira C.Combinatorial optimization by gene expression programming: inversion revisited[A].Proceedings of the Argentine Symposium on Artificial Intelligence[C].2002 .160-174.
  • 10Ferreira C. Mutation, transposition, and recombination: an analysis of the evolutionary dynamics[A].Proceedings of the 6th Joint Conference on Information Sciences, 4th International Workshop on Fronties in Evolutionary Algorithms[C]. Research Triangle Pa

共引文献64

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部