期刊文献+

离散T-S模糊系统的鲁棒无源控制 被引量:1

Robust passive control for discrete-time T-S fuzzy systems
下载PDF
导出
摘要 通过应用Lyapunov稳定性理论,研究了具有参数不确定性的离散T-S模糊系统的鲁棒稳定性和无源性。假设系统中的参数不确定性是范数有界的。具有参数不确定性的T-S模糊模型可以以任意精度近似非线性不确定系统。利用Lyapunov稳定性理论给出了鲁棒无源控制器存在的充分条件。通过运用线性矩阵不等式方法设计出的鲁棒无源控制器能够保证对于T-S模糊系统中所有的参数不确定性闭环系统都是稳定的并且满足给定的无源性能指标。并且,通过求解带有约束条件的线性矩阵不等式问题,可以设计出具有最大耗散率的鲁棒无源控制器。数值算例证明了所提出的设计方法的有效性。 Robust stability analysis and passivity for discrete-time Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties was studied via Lyapunov stability theory. Under the assumption of norm bounted parametric uncertainty, the T-S fuzzy model can approximate nonlinear uncertain systemsa at any precision. On the basis of Lyapunov stability theory, a sufficient condition on the existence of robust passive controllers was derived. With linear matrix inequality (LMI) method, robust passive controllers were designed such that for all admissible uncertainties the closed-loop system is robust stable and strictly passive. The robust passive controller design was parameterized in term of LMI problem. Furthermore, a convex optimization problem with LMI cnstrains was formulated to design robust passive controllers at maximum dissipation rate. A numerical example demonstrates the effect of the proposed design method.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第5期1208-1214,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60710002) 长江学者和创新团队发展计划项目
关键词 自动控制技术 离散T—S模糊系统 鲁棒控制 无源性能指标 线性矩阵不等式 automatic control technology discrete-time T-S fuzzy systems robust control passive performance linear matrix inequality
  • 相关文献

参考文献12

  • 1Zadeh L A. Fuzzy sets[J]. Inf Control, 1965, 8: 338-353.
  • 2Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control [J]. IEEE Trans System, Man, Cybern, 1985, 15: 116-132.
  • 3Wang W J, Sun C H. Relaxed stability and stabilization conditions for T-S fuzzy discrete systems[J]. Fuzzy Sets and Systems, 2005, 156: 208-225.
  • 4Chen B, Liu X P. Fuzzy guaranteed cost control for nonlinear systems with time-varying delay[J]. IEEE Trans on Fuzzy Systems, 2005, 13(2) : 238-249.
  • 5IAu X D, Zhang Q L. Approaches to quadratic stability conditions and control designs for T-S fuzzy systems[J]. IEEE Trans on Fuzzy Systems, 2003, 11(6) : 830-839.
  • 6Jeung E T, Oh K C, Park H B. Delay- dependent control for time-delayed T-S fuzzy systems using descriptor representation[J]. International Journal of Control, 2004, 2(2): 182-188.
  • 7Chang W J, Sun C C. Constrained fuzzy controller design of discrete Takagi-Sugeno fuzzy models [J].Fuzzy Sets and Systems, 2003, 133(1) : 37-55.
  • 8Wong L K, LeungF H F, Tam P K S. Lyapunovfunction-based design of fuzzy logic controller and its application on combining controllers [J]. IEEE Trans Indust Electron, 1998, 45: 502-509.
  • 9Willems J C. Dissipative dynamical systems, part Ⅰ: general theory[J]. Arch Rational Mechanics and A- nalysis, 1972, 45: 321-351.
  • 10Willems J C. Dissipative dynamical systems, part Ⅱ: linear systems with quadratic supply rates[J]. Arch Rational Mechanics and Analysis, 1972, 45: 352-393.

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部