一类无限维李代数的二上圈
2-cocycles on an Infinite-dimensional Lie Algebra
摘要
考虑了一类无限维李代数L的二上圈.通过计算,得到了此类李代数的所有的二上圈,从而确定了L的二上同调群.
In the paper, we consider 2-cocycles on an infinite-dimensional Lie algebra L. We obtain all of the 2-cocycles on this Lie algebra and further determine its second cohomology group.
出处
《常熟理工学院学报》
2008年第8期4-7,共4页
Journal of Changshu Institute of Technology
关键词
无限维李代数
二上圈
二上同调群
infinite-dimensional Lie algebras
2-cocycles
second cohomology groups
参考文献10
-
1Henkel M. Schrodinger invariance and strongly anisotropic critical systems [ J]. J Stat Phys, 1994,75:1023 - 1029.
-
2Roger C, Unterberger J. The Schrodinger-Virasoro Lie group and algebra: representation theory and cohomological study [ J ]. Ann Henri Poincare, 2006,7:1477 - 1529.
-
3Bakalov B, Kac V G, Voronov A A. Cohomology of conformal algebras[J]. Comm Math Phys, 1999,200:561 -598.
-
4Li W. 2-Cocycles on the algebra of differential operators [ J ]. J Algebra, 1989,122.64 - 80.
-
5Li W, Wilson R L. Central extensions of some Lie algebras[J]. Proc Amer Math Soc,1998,126:2569 -2577.
-
6Scheunert M, Zhang R B. Cohomology of Lie superalgebras and their generalizations [ J ]. J Math Phys, 1998,39:5024 - 5061.
-
7Su Y. 2-Cocycles on the Lie algebras of all differential operators of several indeterminates [ J ]. (Chinese) Northeastern Math J, 1990,6:365 - 368.
-
8Su Y. 2-cocycles on the Lie algebras of generalized differential operators[ J]. Comm Algebra,2002,30:763-782.
-
9Su Y. Low dimensional cohomology of general conformal algebras gcN[J]. J Math Phys,2004 ,45 :509 -524.
-
10Su Y, Zhao K. Second cohomology group of generalized Witt type Lie algebras and certain reperesentations [ J ]. Comm Alegrba, 2002,30 : 3285 - 3309.