期刊文献+

基于混合协同进化算法的可调节产品族优化设计 被引量:6

Optimal design for scale-based product family based on hybrid co-evolutionary algorithms
下载PDF
导出
摘要 针对产品族设计中平台通用性与实例产品性能的平衡问题,在分析可调节平台产品开发特点的基础上,基于多平台产品族设计空间的二维染色体表达方式,提出了混合协同进化的产品族优化设计方法。将通用性与设计变量种群的进化分别放入主-附两个相关过程,主过程使用第二代非支配排序遗传算法求解平台通用性与产品性能的Pareto前沿,附过程使用粒子群优化算法,以并行方式搜索每个通用性等级下满足约束的产品族优化方案,避免了两类种群同步进化带来的数据扰动问题。通用性种群对设计变量种群施加约束,保证二者变量共享的一致性。通过单相异步电动机产品族优化设计实例,验证了优化方法与算法的有效性。 To deal with the tradeoff between platform commonality and instance products performances in product family design, characteristics of products using scalable platform development strategy were analyzed. Then, based on the two-dimensional chromosome representation scheme of multi-platform design space, a hybrid co-evolutionary optimization method for scale-based product family was proposed. Evolutions of commonality and design variable populations were run in relevant master-slave processes. The Pareto front between commonality and performance was calculated by Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) in the master process. And the product family variable configuration under each commonality level was optimized by Particle Swarm Optimization (PSO) algorithm in parallel in the slave process so as to avoid the data disturbance in synchronous evolution. Constraints were exerted on all variable swarms by the commonality population to guarantee the parameters sharing consistency. Finally, the feasibility and effectiveness of proposed approach were demonstrated by a case of optimizing a family of three capacitor-run single-phase induction motors.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第8期1457-1465,共9页 Computer Integrated Manufacturing Systems
基金 国家863/CIMS主题资助项目(2008AA042301 2007AA04Z190) 国家自然科学基金资助项目(60573175) 国家科技支撑计划资助项目(2006BAF01A37)~~
关键词 产品开发 产品平台 产品族 平台通用性 混合协同进化算法 异步电动机 product development product platform product family platform commonality hybrid co-evolutionary algorithm induction motor
  • 相关文献

参考文献17

  • 1SIMPSON T. Product platform design and optimization: status and promise[C]//Proceedings of ASME Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, N. Y. , USA: ASME, 2003: 131- 142.
  • 2THEVENOT H, ALIZON F, SIMPSON T, et al. An indexbased method to manage the tradeoff between diversity and commonality during product family design[J]. Concurrent Engineering: Research and Applications, 2007, 15(2) : 127-139.
  • 3SIMPSON T, MAIER J, MISTREE F. Product platform design: method and application[J]. Research in Engineering Design, 2001,13(1) : 2-22.
  • 4NAYAK R, CHEN W, SIMPSON T. A variation-based methodology for product family design [C]//Proceedings of ASME Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, N. Y. , USA: ASME, 2000.
  • 5MESSAC A, MARTINEZ M, SIMPSON T. Effective product family design using physical programming [J]. Engineering Optimization, 2002, 34(3): 245-261.
  • 6MESSAC A, MARTINEZ M, SIMPSON T. Introduction of a product family penalty function using physical programming [J]. Journal of Mechanical Design, 2002, 124(2): 164-172.
  • 7DAI Z, SCOTT M. Product platform design through sensitivity analysis and cluster analysis[J]. Journal of Intelligent Manufacturing, 2007, 18(1): 97-113.
  • 8SIMPSON T, D'SOUZA B. Assessing variable levels of platform commonality within a product family asing a multiobiective genetic algorithm[C]//Proceedings of the 9th AIAA/ISS-MO Symposium on Multidisciplinary Analysis and Optimization. Reston, Va. , USA.. AIAA, 2002.
  • 9KUMAR R, ALLADA V. Scalable platforms using ant colony optimization[J]. Journal of Intelligent Manufacturing, 2007, 18(1): 127-142.
  • 10CHEN Chunbao WANG Liya.MODIFIED GENETIC ALGORITHM APPLIED TO SOLVE PRODUCT FAMILY OPTIMIZATION PROBLEM[J].Chinese Journal of Mechanical Engineering,2007,20(4):106-111. 被引量:8

二级参考文献16

  • 1SIMPSON T, SOUZA B. Assessing variable levels of platform commonality within a product family using a multiobjective genetic algorithm[C]// 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 2002, Atlanta, GA. AIAA, Paper No. AIAA5427.
  • 2KOTA S, SETHURAMAN K, MILLER R. A metric for evaluating design commonality in product families[J]. ASME Journal of Mechanical Design, 2000, 122(4): 403-410.
  • 3JIAO J, TSENG M M. Understanding product family for mass customization by developing commonality indices[J]. Journal of Engineering Design, 2000, 11 (3): 225-243.
  • 4SIMPSON T. Product platform design and optimization: status and promise[C]//ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2003, Chicago, Illinois, ASME, Paper No. DETC2003/DAC-48717.
  • 5DE WECK O L, SUH E S, CHANG D. Product family and platform portfolio optimization[C]//Proceedings of ASME Design Engineering Technical Conferences. Chicago, IL. 2003, Paper No. DETC03/DAC- 48721.
  • 6DAI Z, SCOTT M, Product platform design through sensitivity analysis and cluster analysis[C]//Prececdings of the ASME Design Engineering Technical Conference, 2004, Salt Lake City, UT: ASME, 2004: 893-905.
  • 7MESSAC A, MARTINEZ M, SIMPSON T. A penalty function for product family design using physical programming[J]. ASME Journal of Mechanical Design, 2002a, 124(2): 164-172.
  • 8NAYAK R, CHEN W, SIMPSON T. A variation-based method tor product family design[J]. Engineering Optimization, 2002, 34(1): 65-81.
  • 9GONZALEZ-ZUGASTI J P, OTTO K N, BAKER J D. A method tor arehitecting product platforms[J]. Research in Engineering Design, 2000, 12(2): 61-72
  • 10SOUZA B, SIMPSON T. A genetic algorithm based method for product family design optimization[C]//ASME Design Engineering Technical Conferences - Design Automation Conference (Fadel, G., ed.), September 29 - October 2, 2003, Montreal, Quebec, ASME,1-18.

共引文献7

同被引文献68

  • 1刘弘,刘希玉.支持外观造型创新设计的进化计算方法[J].计算机辅助设计与图形学学报,2006,18(1):101-107. 被引量:39
  • 2高卫国,徐燕申,陈永亮,章青.广义模块化设计原理及方法[J].机械工程学报,2007,43(6):48-54. 被引量:90
  • 3CHEN Chunbao WANG Liya.MODIFIED GENETIC ALGORITHM APPLIED TO SOLVE PRODUCT FAMILY OPTIMIZATION PROBLEM[J].Chinese Journal of Mechanical Engineering,2007,20(4):106-111. 被引量:8
  • 4Hernandez G, Allen J K, Simpson T W, et al. Robust Design of Families for Products with Production Modeling and Revaluation [J]. ASME Journal of Mechanical Design,2001(6) : 183-190.
  • 5Simpson T W. Product Platform Design and Opti mization:Status and Promise[J].Artificial Intelli gence for Engineering Design, Analysis and Manu {acturing,2004,18(1) :3-20.
  • 6Kumar D,Chen W, Simpson T W. A Market-driv- en Approach to the Design of Platform- based Product Families[C]//llth AIAA/ISSMO Multi- disciplinary Analysis and Optimization Conference. Portsmouth, Virginia, USA, 2006 : 200-224.
  • 7Simpson T W. A Concept Exploration Method for Product Family Design[D]. Atlanta, Georgia, USA : Georgia Institute of Technology, 1998.
  • 8Deb K, Pratap A, Agarwal S. A Fast and Elitist Multi- objective Genetic Algorithm: NSC-A- II. IEEE[J]. Transactions on Evolutionary Computa- tion,2002,6(2) :82-197.
  • 9Srinivas N,Deb K. Multi-objective Function Opti- mization Using Nondominated Sorting Genetic Al- gorithms[J]. Evolutionary Computations, 1995, 2 (3) : 221-248.
  • 10Mitra K, Gopinath R. Multi- objective Optimization of an Industrial Grinding Operation Using Elitist Nondominated Sorting Genetic Algorithm[J].Chemical Engineering Science, 2004, 59 (2) : 385 - 396.

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部