期刊文献+

基于数字化生产模型的在线故障诊断技术研究 被引量:4

Technology of on-line fault diagnosis based on digitized production model
下载PDF
导出
摘要 提出了一种基于数字化的生产模型,使用控制图、故障树分析和专家知识,能够进行制造过程实时监控的诊断,该模型提高了故障诊断系统的可靠性,并提供了可实际操作的可视化建模工具。所开发的在线统计过程控制系统能够根据生产事件的监测,动态响应制造过程变化。该系统运用可视化建模工具,根据专家经验进行故障树建模,通过故障树自动生成专家系统诊断规则库,实现诊断知识的自动获取。将该系统应用于汽车变速箱装配过程的检测与故障诊断,验证了方法的有效性。 A fault diagnosis method based on digitized production model with control charts, fault analysis tree (FTA) and expert knowledge was introduced, which could conduct real-time monitoring and control over manufacturing process. This event-based digitized production model enhanced the reliability of fault diagnosis system with visual modeling software, which provided feasible tools for system modeling. An on-line Statistic Process Control (SPC) system was developed, which could be used to detect production event and dynamically respond to the changes of manufacturing process. By using visual modeling tools and experts' experience to construct fault trees, rule base of expert diagnosis system could be obtained automatically, and the diagnosis knowledge could be acquired automatically. The system was applied in detection and fault diagnosis of automobile gear-box assembly process, and the effectiveness of the proposed method was verified.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第8期1617-1621,1645,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(60674114) 国家863计划资助项目(2006AA04Z164,2007AA04Z1A4)~~
关键词 数字化生产模型 统计过程控制 故障诊断 故障树分析 知识库 汽车变速箱 digitized production model statistic process control fault diagnosis fault tree analysis knowledge base automobile gear-box
  • 相关文献

参考文献5

二级参考文献13

  • 1阮俊杰.MKR──一种有效的增量式概念获取系统[J].软件学报,1994,5(4):28-34. 被引量:1
  • 2庞士宗 肖平阳 唐加福.产品数据管理PDM[M].机械工业出版社,2001..
  • 3[3]范影天,杨胜天等.MATLAB 仿真应用详解[M].北京:人民邮电出版社,2001.
  • 4[4]楼顺天,施阳.基于MATLAB 的系统的分析与设计-神经网络[M].西安:西安电子科技大学出版社,2000.
  • 5REAY K A, ANDREWS J D. A fault tree analysis strategy using binary decision diagrams[J]. Reliability Engineering and System Safety, 2002,78(1): 45-56.
  • 6Utgoff P E.Incremental induction of decision trees[J].Machine Learning,1989,4:161-186.
  • 7Quinlan J R.Induction of decision trees[J].Machine Learning,1986,1(1):81-106.
  • 8Zhou Zhihua,Chen Zhaoqian.Hybrid decision tree[J].Knowledge-Based Systems,2002,15(8):515-528.
  • 9清华大学电子学教研组编,余孟尝.数字电子技术基础简明教程[M]高等教育出版社,1999.
  • 10[美]菲奇(Fitch,E·C·),苏尔佳特马扎(Suraatmadza,J·B·) 著,清华大学流体传动与控制教研组.流体逻辑导论[M]机械工业出版社,1985.

共引文献30

同被引文献25

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部