期刊文献+

余有限扩张模

Cofinitely extending modules
下载PDF
导出
摘要 作为扩张模的真推广,引入余有限扩张模,并讨论该模的基本性质.证明余有限扩张模的任意直和项(完全不变的余有限子模)仍是余有限扩张模.若M是余有限扩张模且N是M的闭子模,则M/N是余有限扩张模.设M=M1 M2是duo模.若M1和M2都是余有限扩张模,则M是余有限扩张模. As a proper generalization of extending modules, the concept of cofinitely extending modules was introduced and their basic properties were discussed. It was proved that every direct summand (cofinitely fully invariant submodule) of a cofinitely extending module was still cofinitely extending. Let M be a cofinitely extending module and N a closed submodule of M, then M/N would be cofinitely extending. Let M=M1+M2 be a duo module and if M1 and M2 were both cofinitely extending, then M would be cofinitely extending.
出处 《兰州理工大学学报》 CAS 北大核心 2008年第4期161-163,共3页 Journal of Lanzhou University of Technology
关键词 余有限子模 余有限扩张模 完全不变子模 eofinite submodule eofinitely extending module full invariant submodule
  • 相关文献

参考文献15

  • 1DUNG N V, HUYNH D V, SMITH P F, et al. Extending modules [M]. London:Pitman, 1994.
  • 2WANG Yongduo. Direct summands of modules with (C11) [J].Southeast Asian Bull Math,2006,30:957-962.
  • 3BIRKENMEIER G F, KIM J Y, PARK J K. When is the CS condition hereditary [J]. Comm Algebra, 1999, 27:3 875- 3 885.
  • 4HANADA K,KURATOMI Y, OSHIRO S. On direct sums of extending modules and internal exchange property [J]. J Algebra, 2002,250: 115-133.
  • 5MOHAMED S H,MOLLER B J. Ojective modules [J]. Comm Algebra, 2002,30:1 817-1 827.
  • 6LIU Zhongkui. On X-extending and X-continuous modules [J]. Comm Algebra,2001,29:2 407-2 418.
  • 7BIRKENMEIER G F,TERCAN A. When some complement of a submodule is a summand[J].Comm Algebra, 2007,35: 597- 611.
  • 8SMITH P F,TERCAN A. Direct summands of modules which satisfy (C11) [J].Algebra Colloq, 2004,11 : 231-237.
  • 9ZHOU D. On non-M-singular modules with (C11^+)[J]. Acts Math Hungar, 2002,97: 265-271.
  • 10BIRKENMEIER G F, MULLER B J,RIZVI S T. Modules in which every fully invariant submodule is essential in a direct summand [J]. Comm Algebra,2002,30:1 395-1 415.

二级参考文献13

  • 1[1]DUNG N V,HUYNH D V,SMITH P F,et al.Extending Modules[M].Longman:Pitman Research Notes in Mathematics 313,1994.
  • 2[2]DOGRUOZ S,SMITH P F.Modules which are extending relative to module classes[J].Comm Algebra,1998,26(6):1 699-1 721.
  • 3[3]LIU Zhongkui.On X-extending and X-continuousmodules[J].Comm Algebra,2001,29(6):2 407-2 418.
  • 4[4]CELIK C,HARMANC A,SMITH P F.A Generalization of CS-modules[J].Comm Algebra,1995,23(4):5 445-5 460.
  • 5[5]SMITH P F,TERCAN A.Generalizations of CS-modules[J].Comm Algebra,1993,21 (6):1 809-1 847.
  • 6[6]BIRKENMEIER G F,M(U)LLER B J,RIZVI S T.Modules in which every fully invariant submodule isessential in a direct summand[J].Comm Algebra,2002,30 (3):1 395-1 415.
  • 7[7]ANDERSON F W,FULLER K R.Rings and Categories of Moduels[M].2nd Edition.New York:Springer-Verlag,1992.
  • 8[8]WISBAUER R.Foundations of moudule and ring theory[M].Gordon and Breach:Philadelphia,1991.
  • 9[9]MOHAMED S H,M(U)LLER B J.Ojective modules[J].Comm Algebra,2002,30(4):1 817-1 827.
  • 10BIRKENMEIER G F,MULLER B J,RIZVI S T.Modules in which every fully invariant submodule is essential in a direct summand[J].Comm Algebra,2002,30(3):1 395-1 415.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部