期刊文献+

法向约束的隐式曲面多边形化 被引量:8

Polygonization of Implicit Surfaces with Normal Constraint
下载PDF
导出
摘要 提出一种隐式曲面多边形化的方法,将隐式曲面的多边形化分为2个阶段:首先根据法向约束对隐式曲面进行采样,得到稳定的采样粒子表示;然后在每个采样粒子处沿法线正负方向分别在隐式曲面内部和外部延伸一段距离,得到2个曲面法向附加点.将法向附加点和采样顶点进行四面体化,删除法向顶点及其相关联的边,最终得到隐式曲面的三角形网格模型.最后用实例表明了该方法的有效性. This paper presents a new method for triangulation of implicit surfaces. Particle system with normal constraint is used for sampling on the giver/implicit surface to get steady and reasonable sample particles. Two normal added vertices are introduced by extending the particle to an equal distance along the normal vector and the anti-normal vector. We generate tetrahedral mesh with the sample particles and the normal added vertices, and remove the normal added vertices and corresponding edges to obtain the final triangular mesh. Experiments are reported to demonstrate the efficiency of the new methods.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第9期1180-1185,1190,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60673003 60573180) 山东省自然科学基金青年基金(Y2007G59)
关键词 隐式曲面 三角形网格 法向约束 粒子系统 四面体化 implicit surfaces triangulation normal constraint particle system tetrahedron
  • 相关文献

参考文献20

  • 1Bloomenthal J. An implicit surface polygonizer [M]. Graphics Gems Ⅳ. New York: Academic Press, 1994: 324- 349
  • 2Lorensen W, Cline H. Marching cubes: a high resolution 3 D surface construction algorithm [J]. Computer Graphics, 1987, 21(4): 153-169
  • 3Galin E, Akkouche S. Incremental polygonization of implicit surfaces [J]. Graphic Models, 2000, 62(1): 19-39
  • 4Lewiner T, Lopes H, Vieira A W, et al. Efficient implementation of marching cubes cases with topological guarantees [J]. Journal of Graphics Tools, 2003, 8(2): 1- 15
  • 5Akkouche S, Galin E. Adaptive implicit surface polygonization using marching triangles [J]. Computer Graphic Forum, 2001, 20(2): 67-80
  • 6Bernardini F, Mittleman J, Rushmeier H. The ball-pivoting algorithm for surface reconstruction [J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 349- 359
  • 7de Figueiredo L H, de Miranda Gomes J, Terzopoulos D, et al. Physically-based methods for polygonization of implicit surfaces [C] //Proceedings of Graphics Interface, Vancouver, 1992: 250-257
  • 8Hartmann E. A marching method for the triangulation of surfaces [J]. The Visual Computer, 1998, 14(3): 95-108
  • 9Hilton A, Stoddart A J, Illingworth J, et al. Marching triangles: range image fusion for complex object modeling [C] //Proceedings of International Conference on Image Processing, Lausanne, 1996, 2: 381-384
  • 10Liu S J, Yin X H, Jin X G, etal. High quality triangulation of implicit surfaces [C]//Proceedings of the 9th International Conference on Computer Aided Design and Computer Graphics, Hongkong, 2005:133-138

二级参考文献18

  • 1Bloomenthal J. Polygonization of implicit surfaces [J]. Computer Aided Geometric Design, 1988, 5(4): 341~355
  • 2Pasako A, Adzhiev V, Sourin A, et al. Function representation in geometric modeling: Concepts, implementation and applications [J]. The Visual Computer, 1995, 2(8): 429~446
  • 3Bloomenthal J. An implicit surface polygonizer [A]. In: Graphics Gems IV [C]. New York: Academic Press, 1994. 324~349
  • 4Frédéric T, Philippe M, et al. Fast polygonization of implicit surfaces [A]. In: Winter School of Computer Graphics, Plzen, Czech Republic, 2001. 283~290
  • 5Bloomenthal J. Chapter 4: Surface tiling [A]. In: Introduction to Implicit Surfaces [C]. San Francisco: Morgan Kaufmann Publisher, 1997
  • 6Hart J C. Ray tracing implicit surfaces [A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Anaheim, California,1993. 1~15
  • 7Allgower E, Schmidt P. An algorithm for piecewise-linear approximation of an implicitly defined manifold [J]. Journal of Numerical Analysis, 1985, 22(2): 322~346
  • 8Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects [J]. The Visual Computer, 1986, 2(4): 227~234
  • 9Wyvill B, McPheeters C, Wyvill G. Animating soft objects [J]. The Visual Computer, 1986, 2(4): 235~242
  • 10Jevans D, Wyvill B, Wyvill G. Speeding up 3D animation for simulation [A]. In: Proceedings of Society for Computer Simulation (Multi and Array Processors), San Diego, 1988. 94~100

共引文献9

同被引文献114

  • 1LongChen Jin-chaoXu.OPTIMAL DELAUNAY TRIANGULATIONS[J].Journal of Computational Mathematics,2004,22(2):299-308. 被引量:5
  • 2庞明勇,卢章平,潘志庚.隐式曲面的快速适应性多边形化算法[J].计算机辅助设计与图形学学报,2004,16(11):1511-1516. 被引量:10
  • 3李文姬,钟约先,袁朝龙,李仁举.曲面重构中散乱点云数据曲率估算算法的研究[J].机械设计与制造,2006(6):43-45. 被引量:12
  • 4周术诚,耿国华,周明全.三维破碎物体多尺度拼接技术[J].计算机辅助设计与图形学学报,2006,18(10):1525-1530. 被引量:10
  • 5孙伟,张彩明,杨兴强.Marching Cubes算法研究现状[J].计算机辅助设计与图形学学报,2007,19(7):947-952. 被引量:25
  • 6Singh H, Gokhale A M. Visualization of three-dimensional microstructures [J]. Materials Characterization, 2005, 54 (1): 21-29.
  • 7Meyers D, Skinner S, Sloan K. Surface from contours[J].ACM Transactions on Graphics, 1992, 11(3): 228-258.
  • 8He X H, Teng Q Z, Tao Q C, et al. A new method for volume construction of 3D objects in 3D images [J]. Journal of Sichuan University: Nature Science Edition, 2003, 40(2) : 292-296.
  • 9Ohtake Y, Belyaev A, Alexa M, et al. Multi level partition of unity implicits [J]. ACM Transactions on Graphics, 2003, 22(3): 463-470.
  • 10Gois J P, Polizelii Junior V, Etiene T, et al. Robust and adaptive surface reconstruction using partition of unity implicits [C] //Proceedings of the Brazilian Symposium on Computer Graphics and Image Processing, Minas Gerais, 2007:95-104.

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部