期刊文献+

基于时空全局优化的视频修复 被引量:7

A Global Space-Time Optimization Framework for Video Completion
下载PDF
导出
摘要 提出一种基于样本的视频修复算法,将视频修复问题看作是嵌入到时空视频体中的一个三维图的离散的全局优化问题,可有效地修复视频中较大破损的区域.首先建立待修复视频的马尔科夫随机场(MRF),然后设置新的目标函数,将修复问题转化为马尔科夫随机场的多标号问题,使待修复区域与其周围区域在颜色的相似性和运动的相似性保持一致性.进而提出了灵巧置信传播求解算法,有效求解此目标函数,大大降低了标准置信传播算法的时空复杂度.还提出了与视觉相关的像素权值的概念,使得算法能更好地按照视觉合理性计算时空块的相似度.对复杂动态场修复结果实验表明,较现有算法,文中算法能更好地修复出显著结构和运动信息. This paper presents a new exemplar-based framework for completing video with large spaee-time holes, eonsidering video completion as a proeess of global optimization on a 3D graph embedded in the spaee-time video volume. It first sets up a 3D Markov Random Field (MRF) on the missing holes, then proposes a new global diserete optimization funetion, whieh eonverts the video eompletion into multi-label problem in MRF, and enforees global spatio temporal eonsisteney among patehes that fill the holes, in terms of both eolor similarity and motion similarity. The optimization is aeeomplished by a novel algorithm, ealled smart belief propagation, whieh is signifieantly better than the standard belief propagation, in terms of eompletion quality, eomputational effieieney and storage size. In addition, by ineorporating motion information, we introduee a more effeetive and aeeurate spatio-temporal pateh similarity metrie, whieh leads to more visually pleasing eompletion results. Experiments on several complex dynamic scenes demonstrate that the missing salient video structures and motion information are much better restored by the proposed methods than the existing ones.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第9期1204-1211,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 浙江大学CAD&CG国家重点实验室开放课题(A0808)
关键词 视频修复 置信传播 结构运动信息 video completion belief propagation motion structure information
  • 相关文献

参考文献16

  • 1Bertalmo M, Bertozzi A L, Sapiro G. Navier-stokes, fluid- dynamics and image and video inpainting [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Hawaii, 2001:355-362
  • 2Kwatra V, Sehodl A, Essa I, et al. Grapheut textures: image and video synthesis using graph cuts [J]. ACM Transactions on Graphics, 2003, 22(3): 277-286
  • 3Wexler Y, Shechtman E, Irani M. Space-time completion of video [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 463-476
  • 4Jia J Y, Tai Y W, Wu T P, et al. Video repairing under variable illumination using cyclic motions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(5): 832-839
  • 5Jia Y T, Hu S M, Martin R R. Video completion using tracking and fragment merging [J]. The Visual Computer, 2005, 21(8-10): 601-610
  • 6Efros A A, Leung T K. Texture synthesis by non-parametric sampling [C] //Proceedings of International Conference on Computer Vision, Corfu, IEEE Computer Society Press, 1999:1033-103
  • 7Cheung V, Frey B J, Jojie N. Video epitomes [C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Los Alamitos, 2005:42-49
  • 8Komodakis N, Tziritas G. Image completion using global optimization [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, 2006 : 442-452
  • 9Kwatra V, Essa I, Bobiek A, et al. Texture optimization for example-based synthesis [J]. ACM Transactions on Graphics, 2005, 24(3): 795-802
  • 10Sun J, Yuan L, Jia J Y, et al. Image completion with structure propagation[J]. ACM Transactions on Graphics, 2005, 24(3): 861-868

同被引文献61

  • 1Qin Jianzhao, Yung N H C. Scene Categorization via Contextual Visual Words. Pattern Recognition, 2010, 43 (5) : 1874-1888.
  • 2Lazebnik S, Schmid C, Ponce J. Beyond Bags of Features : Spatial Pyramid Matching for Recognizing Natural Scene Categories//Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA, 2006, II : 2169-2178.
  • 3Bosch A,Muttoz, Zisserman A. Scene Classification Using a HybridGenerative/Discriminative Approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30(4) : 712-727.
  • 4Rasiwasia N, Vasconcelos N M. Scene Classification with Low- Dimensional Semantic Spaces and Weak Supervision//Proc of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008:1-6.
  • 5Bosch A, Munoz X, Marti R. A Review: Which is the Best Way to Organize/Classify Images by Content? Images and Vision Compu- ting, 2007, 25(6) : 778-791.
  • 6Jiang Y, Chen J, Wang R S. Fusing Local and Global Information for Scene Classification. Optical Engineering, 2010, 49(4) : 1-10.
  • 7Song D J, Tao D C. Biologically Inspired Feature Manifold for Scene Classification. IEEE Trans on Image Processing, 2010, 19 (1) : 174-184.
  • 8Wang Y, Mori G. A Discriminative Latent Model of Object Classes and Attributes // Proc of the l lth European Conference on Computer Vision, Crete, Greece, 2010:155-168.
  • 9Oliva A, Torralba A. Modeling the Shape of the Scene : A Holistic Representation of the Spatial Envelope. International Journal of Computer Vision, 2001,42 (3) : 145-175.
  • 10Greene M R, Oliva A. Recognition of Natural Scenes from Global Properties: Seeing the Forest without Representing the Trees. Cognitive Psychology, 2009, 58(2) : 137-176.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部