摘要
研究了K均值算法中初始聚类中心的选择对算法本身聚类精度及效率的影响,并提出了改进的算法(LK算法,Leader+K-means).LK算法中的初始聚类中心选择不是随机的,而是利用Leader算法得到若干个初始类中心,然后选择包含数据项最多的k个类中心,作为K均值算法的初始类中心.实验结果表明,LK算法在聚类结果的稳定性和正确率方面都是有效可行的.
By researching in the relations between the initial means of clusters and the efficiency of clustering, the improved K - means clustering algorithm ( the LK algorithm, Leader + K - means) is proposed. The LK algorithm is better since the initial means is not random selected. At first, it gains several initial means by means of the Leader algorithm, and then selects the k means containing the most data items regarded as the initial means. According to the experiment, the improved K -means clustering algorithm can get higher stability and accuracy .
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期493-496,共4页
Journal of Fuzhou University(Natural Science Edition)
基金
福建省教育厅科研资助项目(JB07022
JB06023)
福州大学科技发展基金资助项目(2006-XQ-22
XRC-0511)