期刊文献+

基于Leader的K均值改进算法 被引量:3

Improved K-means clustering algorithm based the Leader algorithm
原文传递
导出
摘要 研究了K均值算法中初始聚类中心的选择对算法本身聚类精度及效率的影响,并提出了改进的算法(LK算法,Leader+K-means).LK算法中的初始聚类中心选择不是随机的,而是利用Leader算法得到若干个初始类中心,然后选择包含数据项最多的k个类中心,作为K均值算法的初始类中心.实验结果表明,LK算法在聚类结果的稳定性和正确率方面都是有效可行的. By researching in the relations between the initial means of clusters and the efficiency of clustering, the improved K - means clustering algorithm ( the LK algorithm, Leader + K - means) is proposed. The LK algorithm is better since the initial means is not random selected. At first, it gains several initial means by means of the Leader algorithm, and then selects the k means containing the most data items regarded as the initial means. According to the experiment, the improved K -means clustering algorithm can get higher stability and accuracy .
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期493-496,共4页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB07022 JB06023) 福州大学科技发展基金资助项目(2006-XQ-22 XRC-0511)
关键词 聚类 K均值算法 Leader算法 clustering K - means algorithm Leader algorithm
  • 相关文献

参考文献4

二级参考文献15

  • 1吴景岚,朱文兴.基于K均值的迭代局部搜索聚类算法[J].计算机工程与应用,2004,40(22):37-41. 被引量:8
  • 2HanJ KamberM.数据挖掘概念与技术[M].北京:机械工业出版社,2002..
  • 3KUMAR M, ORLIN JB, PATEL NR. Clustering data with measurement errors[ R]. Technical Report, RRR 12 - 2005, New Jersey:RUTCOR, Rutgers Center for Operations Researeh, 2005.
  • 4SU MC. A modified version for k-means[ J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2001, 23 (6) : 674 -680.
  • 5FAYYAD U, REINA C, BRADLEY PS. Initialization of interative refinement clustering algorithms[ A]. Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining[ C].Menlo Park: AAAI Press, 1998. 194 - 198.
  • 6CHAUDHURI D, CHAUDHURI BB. A novel muhiseed nonhierarchical data clustering technique[ J]. IEEE Transactions on Systems,Man and Cybernetics: PartB, 1997, 27(5) : 871 - 877.
  • 7La Jolla. Alternatives to the k-means algorithm that find better clustering. Department of Computer Science and Engineering,University of California,San Diego,CA92093
  • 8Kaufan L,Rousseeuw PJ.Finding Groups in Data:an Introduction to Cluster Analysis[M].New York:John Wiley & Sons, 1990
  • 9Guha S,Rastogi R,Shim K.CURE:an efficient clustering algorithm for large databases[C].In:Haas LM,Tiwary A eds.Proceedings of the ACM SIGMOD International Conference on Management of Data,Seattle: ACM Press, 1998: 73~84
  • 10Agrawal R,Gehrke J,Gunopolos D et al. Automatic subspace clustering of high dimensional data for data mining application[C].In:Haas LM,Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Seattle: ACM Press, 1998: 94~105

共引文献171

同被引文献24

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 2张驰原.谈Clustering系列[EB/OL].(2008-12-29)http://blog.pluskid.org.
  • 3CAO F Y,LIANG J Y,JIANG G.An initialization method for the K-means algorithm using neighborhood model[J].Com- puters&Mathematics with Applications, 2009,58(3) : 474-483.
  • 4Forgy E. Cluster analysis of multivariate data:Efficiency vs.interpret ability of classifications[J].{H}BIOMETRICS,1965,(03):768.
  • 5Maequeen. Some methods for classifieation and analysis of multivariate observations[A].1967.281-297.
  • 6Anil K J. Data clustering:50 years beyond K-Means[J].{H}Pattern Recognition Letters,2010,(08):651-666.
  • 7Ahm ady fard A lireza. M odares Ham idreza[A].Tehran:IEEE Press,2008.
  • 8Hai-xiang Guo,Ke-jun Zhu,Si-wei Gao. An improved genetic K-means algoithm for optimal clustering[A].Leipzig:IEEE Press,2006.
  • 9P.S.Bradley. Refining initial Points for K-Means clustering[A].1998.91-99.
  • 10Nittel S,Kelvin T L,Braverman A. Scaling clustering algorithms for massive data sets using data streams[A].2004.830.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部