期刊文献+

基于模拟退火的基因改进型GEP算法 被引量:7

Revised gene-gene expression programming algorithms based on simulated annealing
原文传递
导出
摘要 基因表达式编程具有强大的函数挖掘能力,有助于在实验数据上提炼数学模型、揭示事物本质规律.尽管标准GEP算法通过改进遗传操作在一定程度上克服了早熟现象,但在解决实际问题中仍常表现出算法的不稳定;此外,标准GEP算法挖掘出的函数表达式往往冗长,可解释性差.针对这些问题本文做了如下工作:(1)对标准GEP算法的基因进行了新的定义,改进了标准GEP算法的基因构成,提高了GEP算法的通用性;(2)将模拟退火引入到标准GEP算法的选择算子中,提出了基于模拟退火的基因改进型基因表达式编程算法(RG-GEP-SA);(3)实验表明,RG-GEPSA算法比标准GEP算法具有更高的稳定性,RG-GEPSA算法比标准GEP算法成功率提高了11%,挖掘出的函数表达式更具有可解释性. Mining functions from experimental data based on Gene Expression Programming (GEP) technique can help scientists to build mathematic model and discover the essential rules hidden in the objects. Traditional GEP avoids the problem of premature convergence to a certain extent by trying to use more genetic operations. However, it often represents instability when it is used to solve some practical problems. In addition, the target functions mined by traditional GEP are often very verbose, and are poorly explicable. To solve the problems mentioned above, this paper makes the following contributions: (1) Revises the Gene structure of the traditional GEP, improving its application domains. (2) Proposes Revised Gene-Gene Expression Pro- gramming Based on Simulated Annealing (RG-GEPSA) algorithm, which combines Gene Expression Pro- gramming and Simulated Annealing. (3) By extensive experiments demonstrates the effectiveness of RG- GEPSA. The results show that RG-GEPSA has higher stability than traditional GEP. RG-GEPSA increases the success-probability by 11% and the functions mined by using the new method are more explicable compared with the traditional GEP.
作者 饶元 元昌安
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第4期767-772,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(60763012)
关键词 改进型基因 基因表达式编程 模拟退火 函数发现 revised gene, GEP, simulated annealing, function finding
  • 相关文献

参考文献10

  • 1Ferreira C. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems [J]. Complex Systems, 2001, 13(2): 87.
  • 2Ferreira C. Function finding and the creation of numerical constants in gene expression programming [DB/OLI. (2002-08-26). http://www.gene-expression-programming. com/webpapers/Ferreira-WSC7. pdf.
  • 3Ferreira C. Mutation, transposition, and recombination. an analysis of the evolutionary dynamics [DB/OL]. (2002-06-25). http://www. gene-expression-programming.com/webpaper/ferreira-fea02.pdf.
  • 4Ferrelra C. Discovery of the boolean functions to the best density-classification rules using gene expression programming [DB/OL]. 2002, http://www.gene-expression-programming.com/webpaper/ferreira-EuroGP02.pdf.
  • 5Zuo J, Tang C J, Zhang T Q. Mining predicate association rule by gene expression programming: proceedings of the 3rd international conference for web information age (WAIM02) [ C]. Berlin: Springer-Verlag, 2002.
  • 6Zuo J, Tang C J, Li C, et al. Time series predication based on gene expression programming: proceedings of the 5th international conference for web information age (WAIM04) [C]. Berlin: Springer-Verlag, 2004.
  • 7段磊,唐常杰,左劼,陈宇,钟义啸,元昌安.基于基因表达式编程的抗噪声数据的函数挖掘方法[J].计算机研究与发展,2004,41(10):1684-1689. 被引量:39
  • 8黄晓冬 唐常杰 李智 等.基于基因表达式编程挖掘函数关系.软件学报,2004,15:96-105.
  • 9元昌安,唐常杰,温远光,胡建军,彭京.基于基因表达式编程的智能模型库系统的实现[J].四川大学学报(工程科学版),2005,37(3):99-104. 被引量:11
  • 10元昌安,唐常杰,左劼,谢方军,陈安龙,胡建军.基于基因表达式编程的函数挖掘——收敛性分析与残差制导进化算法[J].四川大学学报(工程科学版),2004,36(6):100-105. 被引量:44

二级参考文献24

  • 1段磊,唐常杰,左劼,陈宇,钟义啸,元昌安.基于基因表达式编程的抗噪声数据的函数挖掘方法[J].计算机研究与发展,2004,41(10):1684-1689. 被引量:39
  • 2元昌安,唐常杰,左劼,谢方军,陈安龙,胡建军.基于基因表达式编程的函数挖掘——收敛性分析与残差制导进化算法[J].四川大学学报(工程科学版),2004,36(6):100-105. 被引量:44
  • 3琚春华,王光明,陈晓.商业决策支持系统的模型库系统研究[J].系统工程,1997,15(3):12-16. 被引量:13
  • 4Candida Ferreira. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems, 2001, 13(2):87~ 129
  • 5C Ferreira. Gene Expression Programming in Problem Solving [OL]. http://www. gene-expression-programming. com/gep/webpapers/Ferreira-WSC2001/Introduction. htm, 2001
  • 6C Ferreira. Mutation, Transposition, and recombination: An analysis of the evolutionary dynamics. The 6th Joint Conf on Information Sciences, the 4th Int'l Workshop on Frontiers in Evolutionary Algorithms, Research Triangle Park, North Carolina, USA, 2002
  • 7C Ferreira. Discovery of the boolean functions to the best densityclassification rules using gene expression programming. In: Proc of the 4th European Conf on Genetic Programming(EuroGP 2002),LNCS 2278. Berlin: Springer-Verlag, 2002. 51~60
  • 8Zuo Jie, Tang Changjie, Zhang Tianqing. Mining predicate association rule by gene expression programming. In: Proc of the 3rd Int' 1 Conf for Web Information Age 2002 (WAIM02), LNCS 2419. Berlin: Springer-Verlag, 2002. 92~103
  • 9Zuo Jie, Tang Changjie, Li Chuan, et al. Time series prediction based on gene expression programming. In: Proc of the 5th Int'l Conf for Web Information Age 2004 (WAIM04), LNCS 3129.Berlin: Springer-Verlag, 2004. 55~64
  • 10Jiawei Han, Micheline Kambr. Data Mining-Concepts and Techniques. Beijing: Higher Education Press, 2001. 110 ~ 112

共引文献79

同被引文献104

引证文献7

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部