期刊文献+

基于互信息的多关系朴素贝叶斯分类器 被引量:7

Multi-relational Nave Bayesian classifier based on mutual information
原文传递
导出
摘要 为进一步提高多关系朴素贝叶斯方法的分类准确率,分析了已有的剪枝方法,并扩展互信息标准到多关系情况下.基于元组号传播方法和面向元组的统计计数方法,给出了基于扩展互信息标准进行属性选择的方法和步骤,并建立了一种基于扩展互信息的多关系朴素贝叶斯分类器.标准数据集上的实验显示,基于扩展互信息标准进行属性选择,可以在不增加算法时间复杂度的前提下,找到与分类属性最相关的属性,并在仅有极少属性参与分类时,得到较高的分类准确率.Mutagenesis数据集上的实验则显示,这种属性选择可以使多关系问题退化为单关系问题,大大降低了分类代价. To improve the accuracy of multi-relational Naive Bayesian classifiers, the existing pruning methods were discussed and the attribute filter criterion was upgraded based on mutual information to deal with multi-relational data directly. On the basis of the tuple ID propagation method and counting methods towards tuple, the filter method based on extended mutual information was given, and a multi-relational Naive Bayesian classifier based on mutual information (MI-MRNBC) was implemented. Experimental results show that, in a multi-relational domain, with the help of the attribute filter based on extended mutual information, the classifier can give a better accuracy without the increase of time complexity. In extraordinary instances, the multi-relational classification degenerates into a single relational one, which extremely decreases the cost of classification.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2008年第8期963-966,共4页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No60675030)
关键词 朴素贝叶斯 分类器 多关系数据挖掘 归纳逻辑程序设计 互信息 Naive bayesian classifier multi-relational data mining (MRDM) inductive logic programming (ILP) mutual information
  • 相关文献

参考文献10

  • 1Pompe U, Kononenko I. Naive Bayesian classifier within ILP-R// Proceedings of the 5th International Workshop on Inductive Logic Programming. Belgie: Katholleke Universiteit Leuven, 1995: 417
  • 2Peter A, Nicolas L. 1BC: a first-order Bayesian classifier///Proceedings of the 9th International Workshop on Inductive Logic Programming. Berlin: Springer-Verlag, 1999, 1634:92
  • 3Nicolas L, Peter A. IBC2: a true first-order Bayesian classifier//Proceedings of the 12th International Conference on Inductive Logic Programming. Berlin: Springer-Verlag, 2002:133
  • 4Peter A, Nicolas L. Naive Bayesian classification of structured data. Mach Learn, 2004, 57(3): 233
  • 5Ceci M, Appice A, Malerba D. Mr-SBC: a multi-relational Naive Bayesian classifier// Lecture Notes in Artificial Intelligence. Berlin: Springer, 2003 : 95
  • 6Niels L, Kristian K, Luc D. nFOIL: integrating Naive Bayes and FOIL//Proceedings of the 20th National Conference on Artificial Intelligence. Cambridge, 2005:795
  • 7Yin X X, Han J W, Yang J, et al. Efficient classification across multiple database relations: a CrossMine approach. IEEE Trans Knowl Data Eng, 2006, 18 (6): 770
  • 8Yin X X, Han J W, Yang J, et al. CrossMine: efficient classification across multiple database relations//Constraint-Based Mining and Inductive Databases. Hinterzarten: Springer, 2004:172
  • 9Liu H, Yin X X, Han J W. An efficient multi-relational Naive Bayesian classifier based on semantic relationship graphs//Proceedings of ACM-SIGKDD Workshop on Multi-Relational Data Mining. Chicago, 2005:39
  • 10Peng H C, Long F H, Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans Pattern Anal Mach Intell, 2005, 27(8): 1226

同被引文献80

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部