期刊文献+

交互迭代一对一分类算法 被引量:2

Alternating Iterative One-against-One Algorithm
原文传递
导出
摘要 在基于支持向量机的多分类算法中,一对一算法表现出较好的性能.然而此算法却存在不可分区域,落入该区域的样本不能有效被识别,因此影响了一对一算法的性能.为解决这个难题,提出交互迭代一对一分类算法,同时给出算法的有效性分析和计算复杂度证明.为了验证该算法解决不可分区域的能力,我们选用 UCI 数据集来做对比实验.实验结果显示,本文算法不但可以较成功解决不可分区域问题而且表现出比其它算法更好的性能. One-against-one algorithm shows good performance in the multi-class classification algorithm based on SVMs. However, the existing middle unclassifiable region in the algorithm has a bad influence on its performance. To overcome this drawback, a method called aliernating iterative one-against-one algorithm is proposed. And the validity analysis and computational complexity of the proposed algorithm are presented. Finally, one-against-one, fuzzy support vector machine (FSVM), decision directed aeyelie graph (DDAG) and the proposed algorithm are compared on UCI datasets. The experimental results show that the proposed algorithm resolves the unelassifiable region problem effectively and its performance is better than that of the others.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期425-431,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.10471045 10471045) 广东省自然科学基金(No.04020079 970472 000463 04020079)资助项目
关键词 支持向量机 多分类算法 一对一算法 模糊支持向量机 有向无环图算法 Support Vector Machine, Multi-Class Classification Algorithm, One-against-One Algorithm,Fuzzy Support Vector Machine, Decision Directed Acyclic Graph Algorithm
  • 相关文献

参考文献20

  • 1Vapnik V N. The Nature of Statistical Learning Theory. London, UK: Springer-Verlag, 1995
  • 2Allwein E L, Schapire R E, Singer Y. Reducing Muhiclass to Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research, 2001, 1(2): 113-l41
  • 3Rifkin R, Klautau A. In Defense of One-vs-All Classification. Journal of Machine Learning Research, 2004, 5(2) : 101 -141
  • 4Bredensteniner E J, Bennett K P. Multicategory Classification by Support Vector Machines. Computational Optimization and Applications, 1999, 12(1/2/3): 53-79
  • 5Vapnik V N. Statistical Learning Theory. New York, USA: John Wiley & Sons, 1998
  • 6Inoue T, Abe S. Fuzzy Support Vector Machines for Pattern Classification// Proc of the International Joint Conference on Neural Networks. Washington, USA, 2001,Ⅱ: 1449 - 1454
  • 7Abe S. Analysis of Muhiclass Support Vector Machines// Proc of the International Conference on Computational Intelligence for Modelling Control and Automation. Vienna, Austria, 2003 : 385 -396
  • 8KreBel U H G. Pairwise Classification and Support Vector Machines // Scholkopf B, Burges C J, Smola A J, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, USA : MIT Press, 1999 : 255 - 268
  • 9Platt J C, Cristianini N, Shawe-Jaylor J. Large Margin DAGs for Muhiclass Classification//Solla S A, Leen T K, Muller K R, eds: Advances in Neural Information Processing Systems. Cambridge,USA : MIT Press, 2000, 12 : 547 - 553
  • 10Pontil M, Verri A. Support Vector Machine for 3D Object Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(6) : 637 -646

同被引文献16

  • 1王欣,申世杰.木材无损检测研究概况与发展趋势[J].北京林业大学学报,2009,31(S1):202-205. 被引量:38
  • 2业宁,王厚立,徐兆军,丁建文.基于支持向量机的木材缺陷识别[J].计算机应用与软件,2006,23(4):3-5. 被引量:10
  • 3苟博,黄贤武.支持向量机多类分类方法[J].数据采集与处理,2006,21(3):334-339. 被引量:63
  • 4Pham D T, Muhamad Z, Mahmuddin M, et al. Using the bees al- gorithm to optimise a support vector machine for wood defect clas- sification[ C ]//Memofias del. Innovative Production Machines and Systems Virtual Conference. Cardiff: IPROMS, 2007. [ 2010- 07-06]. http ://repo.uum.edu.my/154/.
  • 5Gu I Y H, Andersson H, Vicen R. Wood defect classification based on image analysis and support vector machines [ J ]. Wood Science and Technology, 2010, 44(4) : 693-704.
  • 6Li G, Wang X, Feng H, et al. Analysis of wave velocity patterns in black cherry trees and its effect on internal decay detection [ J ]. Computers and Electronics in Agriculture, 2014, 104: 32-39.
  • 7Fan R E. Working set selection using the second order information for training SVM [ J ]. Journal of Machine Learning Research, 2005(6) : 1889-1918.
  • 8Collobert R, Bengio S. SVM Torch: a support vector machine for large-scale regression and classification problems [ J ]. Journal of Machine Learning Research, 2001 ( 1 ) : 143-160.
  • 9孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1079
  • 10范宇,张冬妍,孙丽萍,徐宇.基于SVM的木材干燥过程含水率软测量研究[J].森林工程,2008,24(4):27-29. 被引量:8

引证文献2

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部