期刊文献+

数据挖掘方法在入侵检测中的应用研究 被引量:2

Study of Data Mining in Intrusion Detection
原文传递
导出
摘要 针对入侵检测数据集具有的类别不均衡性、数据中心重叠、噪音、分布率变化等问题,提出一种集多种数据挖掘方法的解决方案,包括 k-means、C4.5、SVM、Nave Bayes、Bayes Net、Co-training 等,并进行相关实验.实验结果表明其有效性. The solution based on multi-approaches of data mining involving k-means, C4.5, NaYve Bayes,Bayes net and Co-training is proposed in order to deal with the major problems of intrusion detection dataset such as class balance, class overlapping, noise, distributions etc. The experiment results show its validity.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期520-526,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60503021 60721002) 江苏省高技术研究发展计划项目(No.BG2006027) 江苏省自然科学基金项目(No.BK2005075)资助
关键词 重复性 不均衡 入侵检测 软集成 取样 Duplication, Imbalance, Intrusion Detection, Soft-Ensemble, Sampling
  • 相关文献

参考文献23

  • 1Bay S D. UCI KDD Archive [DB-OL]. [2003 -08 -01]. http://kdd. ics. uci. edu/database/kddcop99
  • 2Japkowicz N, Learning from Imbalanced Data Sets: A Comparison of Various Strategies//Proc of the AAAI Workshop on Learning from Imbalanced Data Sets. Austin, USA, 2000:10 - 15
  • 3Kolcz A, Chowdhury A, Alspector J. Data Duplication: An Imbalance Problem? [ EB/OL]. [ 2003 - 08 - 21 ]. http://www.site. uottawa. ca/-nat/Workshop2005/imbalance - kolocz.pdf
  • 4Weiss G M. Mining with Rarity : A Unifying Framework. Newsletter of the ACM Special Interest Group on Knowledge Discovery and Data Mining, 2004, 6( 1 ) : 7 - 19
  • 5Prati R C, Batista G E A P A, Monard M C. Class Imbalances versus Class Overlapping: An Analysis of a Learning System Behavior //Proc of the 3rd Mexican International Conference on Artificial Intelligence. Mexico City, Mexico, 2004 : 312 - 321
  • 6Kubat M, Matwin S. Addressing the Curse of Imbalanced Training Sets: One Sided Selection// Proc of the 14th International Conference on Machine Learning. Nashville, USA, 1997:179-186
  • 7Drummond C, Holte R C. C4. 5, Class Imbalance and Cost Sensitivity: Why Under-Sampling Beats Over-Sampling [ EB/OL ]. [2003 -08 -21 ]. http://games. cs. ualberta.ca/-holte/Publications/icml2003 workshop. pdf
  • 8Chawla N V, Bowyer K W, Hall L O, et al. SMOTE : Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 2002, 16(2): 321 -357
  • 9Drummond C, Holte R C. Severe Class Imbalance: Why Better Algorithms Aren't the Answer// Proc of the 16th European Conference on Machine Learning. Porto, Portugal, 2005:539 -546
  • 10Weiss G M, Provost F J. Learning When Training Data Are Costly : The Effect of Class Distribution on Tree Induction. Journal of Artificial Intelligence Research, 2003, 19 (2) : 315 - 354

二级参考文献3

共引文献386

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部