期刊文献+

具有细节保护的自适应邻域SAR图像分割 被引量:3

SAR Image Segmentation with Detail Preserving Based on Adaptive Neighborhoods
原文传递
导出
摘要 为了保护图像中边缘或其它细节信息,改善 MRF 的分割效果,提出自适应邻域方法.该方法利用 Bayes 推理实现将像素点周围的局部图像信息结合,此过程引入模糊隶属度作为像素相似度度量方法,提高置信度的可靠性和分割过程的自适应性,使得分割过程中的邻域选择可以不依赖于某些预知的先验知识.对于待选择的邻域系统,具有最高置信度且满足置信度阈值的邻域作为 MRF 类别标识分割过程适用的最小邻域.实验结果表明,与固定邻域 MRF 和隐 Markov 随机场相比,本文方法改善了图像分割效果,有效保护了图像中的细节信息. An adaptive neighborhood approach is proposed. The Markov random fields (MRF) segmentation approach with adaptive neighborhood systems is utilized to preserve detail features and border areas and to improve the segmentation effect. Bayesian inference is applied to integrate the different information sources of local image around the pixels. To improve the reliability of the belief value and the adaptivity, fuzzy c-means (FCM) clustering is introduced in Bayesian network. Thus, the selection of the neighborhood in the region label process need not depend on the known priori knowledge by applying the FCM. The neighborhood with the highest belief value in the threshold scope is chosen to compute the MRF region label process. Experimental results demonstrate that the segmentation effect of the proposed algorithm is superior to that of the classical MRF and hidden Markov random field with detail structures well preserved.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第4期527-534,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60673097 60703109) 国家部委科技项目(No.A1420060172 51307040103)资助
关键词 Markov随机场(MRF) BAYES网络 模糊聚类 图像分割 Markov Random Field (MRF), Bayesian Network, Fuzzy Clustering, Image Segmentation
  • 相关文献

参考文献12

  • 1Stan Z L. Markov Random Field Modeling in Image Analysis. 2nd Edition. Berlin, Germany : Springer-Verlag, 2000
  • 2Cross G R, Jain A. Markov Random Field Texture Models. IEEE Trans on Pattem Analysis and Machine Intelligence, 1983, 5 ( 1 ) : 25 - 39
  • 3Deng Huawu, Clausi D A. Unsupervised Segmentation of Synthetic Aperture Radar Sea Ice Imagery Using a Novel Markov Random Field Model. IEEE Trans on Geoscience and Remote Sensing, 2005, 43(3): 528-538
  • 4Wainwright M J, Jordan M I. Log-Determinant Relaxation for Approximate Inference in Discrete Markov Random Fields. IEEE Trans on Signal Processing, 2006, 56(4) : 2099 -2109
  • 5Destrempes F, Angers J F, Mignotte M. Fusion of Hidden Markov Random Field Models and Its Bayesian Estimation. IEEE Trans on Image Processing, 2006, 15 (10) : 2920 - 2935
  • 6Gu D B, Sun J X. EM Image Segmentation Algorithm Based on an Inhomogeneous Hidden MRF Model. lEE Proceedings-Vision, Image and Signal Processing, 2005, 152(2) : 184 -190
  • 7Bovolo F, Bruzzone L. A Detail-Preserving Scale-Driven Approach to Change Detection in Muhitemporal SAR Images. IEEE Trans on Geoscienee and Remote Sensing, 2005, 43(12) : 2963 -2972
  • 8Smits P C, Dellepiane S G. Synthetic Aperture Radar Image Segmentation by a Detail Preserving Markov Random Field Approach. IEEE Trans on Geoscience and Remote Sensing, 1997, 35 (4) : 844 - 857
  • 9Haralick R M, Shapiro L G. Computer and Robot Vision. New York, USA: Addison Wesley, 1992
  • 10Duda R O, Hart P E, Stork D G. Pattern Classification. New York, USA: John Wiley and Sons, 2001

同被引文献23

  • 1齐丽娜,张博,王战凯.最大类间方差法在图像处理中的应用[J].无线电工程,2006,36(7):25-26. 被引量:119
  • 2LOMBARDO P,OLIVER C J,PELLIZZERI T M,et al.A new maximum likelihood joint segmentation technique for multitemporal SAR and multiband optical images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2500-2518.
  • 3POHL C,VAN GENDEREN J L.Multisensor image fusion in remote sensing concepts,methods and applications[J].International Journal of Remote Sensing,1998,19(5):823-854.
  • 4BURT P J,KOLCZYNSKI R J.Enhanced image capture through fusion[C] // Proceedings of IEEE 4th International Conference on Computer Vision.Piscataway,NJ,USA:IEEE,1993:173-182.
  • 5BENEDIKTSSON J A,SWAIN P H.Consensus theoretic classification methods[J].IEEE Transactions on Systems,Man and Cybernetics,1992,22(4):688-704.
  • 6SARKAR A,BISWAS M K,KARTIKEYAN B,et al.A MRF model-based segmentation approach to classification for multispectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2002,4(5):1102-1113.
  • 7GEMAN S,GEMAN D.Stochastic relaxation,Gibbs distribution and the Bayesian restoration of images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(6):721-741.
  • 8LI S Z.Markov random field modeling in computer vision[M].New York,USA:Springer-Verlag,2001.
  • 9SUK M,CHUNG S.A new segmentation technique based on partition mode test[J].Pattern Recognition,1983,16(5):469-480.
  • 10OSBERGER W,MAEDER A J.Automatic identification of perceptually important regions in an image[C] //Proceedings of IEEE 14th International Conference on Pattern Recognition.Los Alamitos,CA,USA:IEEE Computer Society,1998:701-704.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部