期刊文献+

基于数据挖掘和变长序列模式匹配的程序行为异常检测 被引量:2

Anomaly Detection of Program Behaviors Based on Data Mining and Variable-Length Sequence Matching
下载PDF
导出
摘要 异常检测是目前入侵检测领域研究的热点内容。提出一种基于数据挖掘和变长序列模式匹配的程序行为异常检测方法,主要用于Unix或Linux平台上以系统调用为审计数据的主机型入侵检测系统。该方法利用数据挖掘技术中的序列模式对特权程序的正常行为进行建模,根据系统调用序列的支持度在训练数据中提取正常模式,并建立多种模式库来表示一个特权程序的行为轮廓。在检测阶段,考虑到审计数据和特权程序的特点,采用了变长序列模式匹配算法对程序历史行为和当前行为进行比较,并提供了两种判决方案,能够联合使用多个窗长度和判决门限对程序行为进行判决,提高了检测的准确率和灵活性。文中提出的方法已应用于实际入侵检测系统,并表现出良好的检测性能。 Network anomaly detection has been an active research topic in the field of Intrusion Detection for many years. This paper presents a new method for anomaly detection of program behaviors based on data mining and variable-length sequence pattern matching. The method uses sequence patterns in data mining technique to model the normal behavior of a privileged program, extracts normal system call sequences according to their supports in the training data, and constructs multiple dictionaries of sequences of different lengths to represent the behavior profile of the program. At the detection stage, variable length sequences are matched to perform the comparison of the historic normal behaviors and current behaviors, and two different schemes can be used to determine whether the monitored program' s behaviors are normal or anomalous while the particularity of program behaviors and audit data is taken into account. The application of the method in practical intrusion detection systems shows that it can achieve high detection performance.
出处 《信号处理》 CSCD 北大核心 2008年第4期551-555,共5页 Journal of Signal Processing
基金 国家“九七三”重点基础研究发展规划项目(2004CB318109) 国家“八六三”高技术研究发展计划项目(863-307-7-5) 国家242信息安全计划项目(2005C39)
关键词 入侵检测 数据挖掘 异常检测 系统调用 intrusion detection data mining anomaly detection system call
  • 相关文献

参考文献14

  • 1Lane T, Carla E B. An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection [ J ]. Machine Learning,2003,51 ( 1 ) :73-107.
  • 2Mukkamala S, Sung A H, Abraham A. Intrusion Detection Using an Ensemble of Intelligent Paradigms [ J ]. Journal of Network and Computer Application,2005,28 (2) : 167-182.
  • 3Lane T. Machine Learning Techniques for the Computer Security Domain of Anomaly Detection [ D ]. Purdue University, 2000.
  • 4Yan Qiao, Xie Wei-Xin, Yang Bin, et al. An Anomaly Intrusion Detection Method Based on HMM [ J ]. Electronics Letters,2002,38 (13) :663-664.
  • 5Warrender C, Forrest S, Pearlmutter B. Detecting Intrusions Using System Calls:Alternative Data Models[ A ]. Proceedings of the 1999 IEEE Symposium on Security and Privacy [ C ], 1999 : 133-145.
  • 6Hofmeyr S A, Forrest S, Somayaji A. Intrusion Detection using Sequences of System Calls [ J ]. Journal of Computer Security, 1998(6) : 151-180.
  • 7Lee W, Dong X. Information-Theoretic Measures for Anomaly Detection[ A]. Proceedings of the 2001 IEEE Symposi- um on Security and Privacy s [ C ] , Oakland, USA,2001 : 130-134.
  • 8Forrest S, Hofmeyr S A ,Somayaji A. Computer Immunology [ J ]. Communications of the ACM, 1997,40 ( 10 ) : 88- 96.
  • 9Oh S H, Lee W. A Clustering-Based Anomaly Intrusion Detection for a Host Computer[ J]. IEICE Transactions on Information and Systems,2004, E87-D ( 8 ) :2086-2094.
  • 10Ye N, Emran S M, CHEN Q et al. Multivariate Statistical Analysis of Audit Trails for Host-Based Intrusion Detection[ J ]. IEEE Transactions on Computers, 2002, 51 ( 7 ) : 810-820.

二级参考文献22

  • 1[1]Lee Wenke, Stolfo S J. Data mining approaches for intrusion detection. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 2[2]Lee Wenke, Stolfo S J, Mok K W. A data mining framework for building intrusion detection models. In: Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999. 120-132
  • 3[3]Lee Wenke. A data mining framework for constructing features and models for intrusion detection systems[Ph D dissertation]. Columbia University, 1999
  • 4[4]Paxson Vern. Bro: A system for detecting network intruders in real-time. In: Proc the 7th USENIX Security Symposium, San Antonio, TX, 1998
  • 5[5]Agrawal Rakesh, Srikant Ramakrishnan. Fast algorithms for mining association rules. In: Proc the 20th International Conference on Very Large Databases, Santiago, Chile, 1994
  • 6[6]Agrawal Rakesh, Srikant Ramakrishnan. Mining sequential patterns. IBM Almaden Research Center, San Jose, California:Research Report RJ 9910, 1994
  • 7[7]Chen M, Han J, Yu P. Data mining: An overview from database perspective. IEEE Trans Knowledge and Data Engineeing, 1996,8(6):866-883
  • 8Lane T,Brodley C E. An application of machine learning to anomaly detection. In:Proceedings of the 20th National Informa-tion Systems Security Conference,Baltimore Marylard, USA, 1997.366~377
  • 9Kosoresow A P,Hofmeyr S A. A shape of self for UNIX processes. IEEE Software,1997,14(5):35~42
  • 10Lee W,Stolfo S J. Data mining approaches for intrusion detection. In:Proceedings of the 7th USENIX Security Symposium,San Antonio, Texas, USA, 1998. 66~72

共引文献105

同被引文献20

  • 1吕志军,袁卫忠,仲海骏,黄皓,曾庆凯,谢立.基于数据挖掘的异常入侵检测系统研究[J].计算机科学,2004,31(10):61-65. 被引量:6
  • 2李守国,李俊.基于数据挖掘的入侵检测系统设计[J].计算机技术与发展,2006,16(4):212-214. 被引量:5
  • 3VERWORD T, HUNT R. Intrusion detection techniques and approaches[J].Computer Communication,2002,25(15): 1356.1365.
  • 4LANE T. Machine learning techniques for the computer security domain of anomaly detection[D]. Purdue University, 2000.
  • 5MUKKAMALA S, SUNG A H,ABRAHAM A. Intrusion detection using all ensemble of intelligent paradigms[J]. Journal of Network and Computer Application,2005,28(2): 167-182.
  • 6BARFORD P, HIINE J,PLONKA D,et al. A signal analysis of network traffic anomalies[J].Internet Measurement Workshop, 2002,7 : 1 - 82.
  • 7YE N, LI Xiang Yatig, CHEN Qiang. Probabilistic techniques for intrusion detection based on computer audit data[J]. Man and Cybernetics,Part A,IEEE Transactions on 2001 : 31(4) : 266-274.
  • 8YE N,EMRAN S M,CHEN Q, et al. Multivariate statistical analysis of audit trails for host-based intrusion detection[J].IEEE Transactions on Computers, 2002,51(7) : 810-820.
  • 9OH S H, LEE W. A clustering based anomaly intrusion detection for a host computer[J].IEICE Transactions on In. formation and Systems, 2004, E87-D(8) : 2086-2094.
  • 10HOFMEYR S A,FORREST S,SOMAYAJI A. Intrusion detection using sequences of system calls[J]. Journal of Computer Security, 1998(6) : 151 - 180.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部