期刊文献+

高分辨SAR图像中杂波的统计特性分析 被引量:11

Statistical Analysis of Clutter in High-Resolution SAR Images
下载PDF
导出
摘要 为使SAR图像目标检测在复杂多变的地物杂波环境中获得最佳的性能,研究SAR图像中杂波的统计特性将是一件有意义的工作。在综合对比已有统计模型的基础上,从理论上重点分析了G^0分布。运用实测SAR场景中表征不同地物类型的大量数据,从幅度直方图拟合、拟合精度检脸等方面深入分析了杂波的统计特性。得出了在目前已有实用的统计模型中,G^0分布最适合于描述SAR图像杂波统计特性,它是一种对于均匀、一般不均匀和极不均匀杂波区域建模的通用分布的新结论。因此,以C^0分布为杂波模型的目标检测算法具有巨大的应用潜力。 In order to ensure the best performance of target detection in SAR images in complex and varying clutter,it is significant to study the statistical property f clutter. Based on the synthetic comparison of the existing statistical model ,the Go distribution is analyzed in theory with emphasis. By applying the real SAR data denoting different terrain categories, the clutter is analyzed comprehensively with amplitude histogram fitting,the goodness-of-fit, etc. A new conclusion is obtained that the Go distribution is most appropriate to describe the statistical property of clutter and is a general distribution for statistically modeling the homogeneous,heterogeneous and extremely heterogeneous clutter regions. Thus ,the Go distribution has great potential to the algorithm design of target detection.
出处 《信号处理》 CSCD 北大核心 2008年第4期648-654,共7页 Journal of Signal Processing
基金 国家自然科学基金项目 武器装备预先研究项目
关键词 合成孔径雷达 统计特性 杂波 拟合精度 通用分布 Synthetic Aperture Radar statistical property clutter the goodness-of-fit the general distribution
  • 相关文献

参考文献9

  • 1C. J. Oliver. Understanding Synthetic Aperture Radar Images. Artech House, Boston/London, 1998.
  • 2J. B. Billingsley, et al. Statistical Analyses of Measured Radar Ground Clutter Data. IEEE Trans. AES, 1999,35 ( 3 ) : 579-593.
  • 3匡纲要.SAR图像统计建模研究.国防科学技术大学技术报告,2005,11-15.
  • 4高贵,张军,吕信明,周蝶飞,黄纪军,蒋咏梅.SAR图像乘性噪声模型分析[J].信号处理,2008,24(2):161-167. 被引量:16
  • 5A. C. Frery, et al. A Model for Extremely Heterogeneous Clutter, IEEE Trans. GRS, 1997,35 ( 3 ) :648-659.
  • 6H. J. Muller. Modeling of extremely heterogeneous radar backscatter. IGARSS '97,1997,4 : 1603-1605.
  • 7H. J. Muller,et al. G-statistics for scaled SAR data. IGARSS '99,1999,2 : 1297-1299.
  • 8H. J. Muller. Characterization of Radar Clutter by Gamma Induced Distribution. IGARSS '98,1998,3 : 1216-1218.
  • 9J. S. Salazar II. Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model [ D]. New Mexico University, 1999.

二级参考文献16

  • 1C. Oliver. Understanding Synthetic Aperture Radar Images. Artech House, Bostort/London, 1998.
  • 2A. P. Blake, D Blacknell, C. J. Oliver. High Resolution SAR Clutter Textural Analysis and Simulation. SPIE Vol. 2584, 101-108,1995.
  • 3Lance M. Kaplan, Analysis of Multiplicative Speckle Models for Template-Based SAR ATR, IEEE Trans. On AER. Vol. 37, No. 4, October,2001.
  • 4M. Thr, K. C. Chin,and J. W. Goodman,When is speckle noise multiplicative. Appl. Opt. , Vol. 21, 1982, 1157- 1159.
  • 5J. S. Salazar. Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model, 1999.
  • 6Vassilis Anastassopoulos. High Resolution Radar Clutter Statistics. IEEE Transactions on AES VOL. 35, NO. 1, January 1999.
  • 7Ercan E. Kuruoglu, Josiane Zerubia. Modeling SAR Images With a Generalization of the Rayleigh Distribution. IEEE. 2004.
  • 8A. C. FRERY, C. C. F. Yanasse, and S. J. S. Sant' Anna, Ahrmative distributions for the muhiplicative model in SAR images,in Quantitative Remote Sens. Sci. Applicat. , Int. Geosci. Remote Sensing Symp. , Florence, Italy, July 10-14,1995,Vol. 1,169-171.
  • 9David Blaeknell,A Mixture Distribution Model for Correlated SAR Clutter, SPIE,Vol. 2958,1996,38-49.
  • 10B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution, New York : Springer-Verlag, 1982 ,Lecture Notes in Statistics,9.

共引文献15

同被引文献129

  • 1付琨,孙真真,吴一戎.基于Beta-Prime统计模型和QGD分类器的SAR图像地物分类方法[J].电子学报,2003,31(z1):2163-2166. 被引量:2
  • 2曹晨,王小谟.关于雷达杂波性质研究的若干问题[J].现代雷达,2001,23(5):1-5. 被引量:50
  • 3田金文,耿远明,程辉,于秋则.基于图像分割的SAR图像匹配方法[J].华中科技大学学报(自然科学版),2006,34(10):31-33. 被引量:6
  • 4Moser G, Zerubia J, Serpico SB. Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation. IEEE Trans on GRS, 2006, 44(1): 188-200
  • 5Eltoft T. Modeling the amplitude statistics of ultrasonic images. IEEE Trans on Medical Imaging, 2006, 25(2) : 229-240
  • 6Moser G, Zerubia J, Serpico SB. SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE TransonIP, 2006, 15(6): 1429-1442
  • 7Greco MS, Gini F. Statistical analysis of high resolution SAR ground clutter data. IEEE Trans on GRS, 2007, 45(3): 566-575
  • 8Arsenault HH, April G. Properties of speckle integrated with a finite aperture and logarithmicaly transformed. J Opt Soe Am, 1976, 66(11): 1160-1163
  • 9Ward KD. Compound representation of high resolution sea clutter. Electron Lett, 1981, 7:561-565
  • 10Frery AC, Muller HJ, Yanasse CF, et al. A model for extremely heterogeneous clutter. IEEE Trans on GRS, 1997, 35(3): 648-659

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部