期刊文献+

Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs

Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs
原文传递
导出
摘要 The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant ε〉 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (ku, kl), our algorithm constructs a vertex cover of size (ku^*, kl^*), satisfying max{ku^*/ku, kl^*/kl} ≤ 1 + ε. The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant ε〉 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (ku, kl), our algorithm constructs a vertex cover of size (ku^*, kl^*), satisfying max{ku^*/ku, kl^*/kl} ≤ 1 + ε.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第5期763-768,共6页 计算机科学技术学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant Nos. 60433020 and 60773111 the National Basic Research 973 Program of China under Grant No. 2008CB317107 the Provincial Natural Science Foundation of Hunan under Grant No. 06JJ10009 the Program for New Century Excellent Talents in University under Grant No. NCET-05-0683 the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0661.
关键词 Min-CVCB parameter complexity chain implication approximation algorithm Min-CVCB, parameter complexity, chain implication, approximation algorithm
  • 相关文献

参考文献13

  • 1Chen J, Kanj I A. Constrained minimum vertex cover in bipartite graphs: Complexity and parameterized algorithms. Journal of Computer and System Science, 2003, 67(4): 833-847.
  • 2Hasan N, Liu C L. Minimum fault coverage in reconfigurable arrays. In Proc. 18th Int. Syrup. Fault-Tolerant Computing (FTCS'88), Los Alamitos, CA, 1988, pp.348-353.
  • 3Nilsson N J. Principles of Artificial Intelligence. Palo Alto: Tioga Publishing Co., CA, 1980.
  • 4Blough D M. On the reconfigurable of memory arrays containing clustered faults. In Proc. 21st Int. Syrup. Fault-Tolerant Computing (FTCS'91), Montreal, Canada, 1991, pp.444-451.
  • 5Blough D M. Pelc A. Complexity of fault diagnosis in comparison models. IEEE Trans. Comput., 1992, 41(3): 318-323.
  • 6Hasan N, Liu C L. Fault covers in reconfigurable PLAs. In Proc. 20th Int. Syrup. Fault-Tolerant Computing (FTCS'90), Newcastle upon Tyne, 1990, pp.166-173.
  • 7Kuo S Y, Fuchs W K. Efficient spare allocation for reconfigurable arrays. IEEE Des. Test, 1987, 4(1): 24-31.
  • 8Low C P, Leong H W. A new class of efficient algorithms for reconfiguration of memory arrays. IEEE Trans. Comput., 1996, 45(1): 614-618.
  • 9Smith M D, Mazumder P. Generation of minimal vertex cover for row/column allocation in self-repairable arrays. IEEE Trans. Comput., 1996, 45(1): 109-115.
  • 10Fernau H, Niedermeier R An efficient exact algorithm for constraint bipartite vertex cover. J. Algorithms, 2001, 38(2): 374-410.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部