摘要
证明了当Γ是有限连通的赋值AR-箭图时,存在Γ的有限Galois覆盖Γ,使得H(Γ)1是整系数结合环,H(Γ)1ZQ是Lie子代数L(Γ)ZQ的泛包络代数且有Lie代数同构:L(Γ)/DL(Γ),这里,H(Γ)1是Γ的退化Ringel-Hal代数,D是相应的有限Galois群.
Let Γ be a finite connected valued AuslanderReiten quiver,it is proved that there exists a finite Galois covering Γ of Γ,such that H(Γ)1 is an associative ring with integeral coefficient,H(Γ)1ZQ is the enveloping algebra of L(Γ)1ZQ,and L(Γ)/DL(Γ),where H(Γ)1 is the degenerate RingelHall algebra and D is the corresponding finite Galois group.
出处
《山东大学学报(自然科学版)》
CSCD
1997年第3期265-269,共5页
Journal of Shandong University(Natural Science Edition)
关键词
R-H代数
有限图
连通图
Galis
赋值AR-箭图
RingelHall algebras
Hall polynomials
degenerate RingelHall algebras
Galois covering
short chains