期刊文献+

一种基于竞争策略的粒子群优化算法 被引量:1

Particle Swarm Optimization Based on Competition Strategy
下载PDF
导出
摘要 为提高粒子群优化(Particle Swarm Optimization,PSO)算法的收敛精精度与速度,提出了一种基于竞争策略的粒子群优化算法。算法通过对两粒子相似度的判定,来决定是否对粒子进行变换操作,能够提高粒子的多样性,避免局部最优,提高了收敛精度,并且当两个粒子被判定为同一个粒子时,根据适者生存的思想,适应度较优的粒子保留下来,适应度较差的粒子则需进行高斯变异变换,在保证粒子多样性的基础上减少了运算量,提高了收敛速度。并且通过多峰函数(Achley函数、Schaffer函数、Grienwank函数)验证,结果表明,改进后的粒子群优化算法在收敛精度与收敛速度方面都优于基本的粒子群优化算法。 In order to improve the precision and rate of convergence of PSO, Particle Swarm Optimization Based on Competition Strategy is proposed. Whether the transformation operation is preceded is determined by the similarity of two particles. So it can improve the diversity. And it has the capability of avoiding premature convergence and im- proves the convergence precision, According to the principle of survival of the fittest, the particle with better fitness performance survives and GA operation is only applied to the particle with bad performance, so convergence velocity is improved. And it is tested by Ackley function, Shcaffer function and Grievank function. The result shows that the improved PSO is better than the basic one in the performance of convergence and precision
出处 《计算机仿真》 CSCD 2008年第8期166-168,182,共4页 Computer Simulation
关键词 粒子群优化 全局最优 竞争策略 PSO Global optimization Competition strategy
  • 相关文献

参考文献9

  • 1James Kennedy, Russell Eberhart. Particle Swarm Optimization/ [ C]. In: IEEE Int'l Conference on Neural Networks, Perth, Australia, 1995. 1942 - 1948.
  • 2James Kennedy, Russell Eberhart. A New Optimizer Using Particle Swarm Theory[C]. In: Proc of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995.39-43
  • 3Y Shi, R Eberhart. A modified particle swarm optimizer[ C]. In: IEEE World Congress on Computational Intelligence. 1998.68 -73.
  • 4Y Shi, R Eberhart. Fuzzy Adaptive Particle Swarm Optimization [ C ]. In :Proc Congress on Evolutionary Computation, Seoul, Korea,2001.
  • 5C Eberhart, Y Shi. Comparing inertia weights and constriction factors in particle swarm optimization [ C ]. Proceedings of the 2000 International Congress on Evolutionary Computation (San Diego, Calfornia) ,IEEE Service Center, Piscataway, N J,2000.
  • 6Bo Wang, GuoQiang Liang, ChaLin Wang. A New Kind of Fuzzy Particle Swarm Optimization FUZZY PSO Algorithm[ C ]. ISSCAA 2006.1st International Symposium on Systems and Control in Aerospace and Astronautics, 2006.
  • 7Javad Sadri, Agenetic Binary Particle Swarm Optimization Model [ C]. 2006 IEEE Congress on Evolutionary Computation Vancouver, BC, Canada, 2006.1
  • 8刘丽珏,蔡自兴.带繁殖和退化的微粒群算法[J].计算机工程与应用,2006,42(26):36-37. 被引量:2
  • 9高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160

二级参考文献6

  • 1Kennedy J,Eberhart R C.Particle swarm optimization[C].In:Proceedings of IEEE International Conference on Neural Networks,Perth Australia,1995:1942~1948
  • 2Van den Bergh F.An analysis of particle swarm optimizers[D].Ph D dissertation.Department of Computer Science,University of Pre2 toria,South Africa,2002
  • 3Angeline P J.Using Selection to Improve Particle Swarm Optimization[C].In:IEEE International Conference on Evolutionary Computation.Anchorage,Alaska,USA,1998
  • 4王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78. 被引量:351
  • 5王磊,潘进,焦李成.免疫规划[J].计算机学报,2000,23(8):806-812. 被引量:63
  • 6高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6. 被引量:160

共引文献160

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部