期刊文献+

Wave Fans are Special

Wave Fans are Special
原文传递
导出
摘要 It is shown that self-similar BV solutions of genuinely nonlinear strictly hyperbolic systems of conservation laws are special functions of bounded variation, with vanishing Cantor part. It is shown that self-similar BV solutions of genuinely nonlinear strictly hyperbolic systems of conservation laws are special functions of bounded variation, with vanishing Cantor part.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第3期369-374,共6页 应用数学学报(英文版)
基金 the National Science Foundation under grants DMS-0202888 and DMS-0244295.
关键词 Hyperbolic conservation laws self-similar solutions special functions of bounded variation Hyperbolic conservation laws, self-similar solutions, special functions of bounded variation
  • 相关文献

参考文献7

  • 1Ambrosio, L., DeLellis, C. A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton- Jacobi equations. J. Hyperbollc Diff. Eqs., 1:813-826 (2004)
  • 2Ambrosio, L., Fnsco, N., Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford, Clarendon Press, 2000
  • 3Dafermos, C.M. Hyperbolic Conservation Laws in Continuum Physics. Second Edition. Heidelberg, Springer-Verlag, 2005
  • 4Glimm, J., Lax, P.D. Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs AMS, No.101, 1970
  • 5Lax, P.D. Hyperbolic systems of conservation laws. Comm. Pure Appl. Math., 1O: 537-566 (1957)
  • 6Oleinik, O.A. Discontinuous solutions of non-linear differential equations. Usp. Mat. Nauk, 12:3-73 (1957)
  • 7Volpert, A.I. The space BV and quasilinear equations. Mat. Sbornik, 73:255-302 (1967)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部