期刊文献+

Uniqueness and Radial Symmetry of Least Energy Solution for a Semilinear Neumann Problem

Uniqueness and Radial Symmetry of Least Energy Solution for a Semilinear Neumann Problem
原文传递
导出
摘要 Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly. Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第3期473-482,共10页 应用数学学报(英文版)
基金 the National Natural Science Foundation of China(No.10571174,10631030) Chinese Academy oF Sciences grant KJCX3-SYW-S03.
关键词 Implicit function theorem least energy solution radial symmetry Neumann problem ELLIPTIC Implicit function theorem, least energy solution, radial symmetry, Neumann problem, elliptic
  • 相关文献

参考文献13

  • 1Bonder, J.F., Dozo, E.L., Rossi, J. D. Symmetry properties for the extremals of the Sobolev trace embed- ding. Ann. Inst. H. Poincare Anal Nonlineaire, 21:795-805 (2004)
  • 2Chern, J.L., Lin, C.S. The symmetry of least-energy solutions for semilinear equations. J. Differential Equations, 187:240-268 (2003)
  • 3Evans, L.C. Partial Differential Equations. G.S.M. Vol.19. American Mathematical Society: Providence, RI 1998
  • 4Gierer, A., Meinhardt, H. A theory of biological pattern formation. Kybernetik, (Berlin) 12:30-39 (1972)
  • 5Grossi, M. Uniqueness of the least-energy solution for a semilinear Neumann problem. Proc.Amer. Math. Soc., 128(6): 1665-16772 (2000)
  • 6Lang, S. Differential and Riemannian Manifolds. Springer-Verlag, Berlin, 1995
  • 7Lin, C.S. Locating the peaks of solutions via the maximum principle: Ⅰ. The Neumann problem. Comm.Pure Appl. Math., LIV: 1065-1095 (2001)
  • 8Lin, C.S., Ni, W.M. On the diffusion coefficient of a semilinear Neumann problem, in Calculus of Variations and Partial Differential Equations, S.Hildebrandt, D.Kinderlchrer and M.Miranda, eds., Lecture Notes in Math. 1340, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1988, pp.160-174
  • 9Lin, C.S., Ni, W.M., Takagi, I. Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations, 72:1-27 (1988)
  • 10Ni, W.M., Takagi, I. On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. AMS, 297:351-368 (1986)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部