期刊文献+

A Note on Solutions for Asymptotically Linear Elliptic Systems

A Note on Solutions for Asymptotically Linear Elliptic Systems
原文传递
导出
摘要 In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods. In this paper, we are concerned with the elliptic system of{ -△u+V(x)u=g(x,v), x∈R^N, -△v+V(x)v=f(x,u), x∈R^N, where V(x) is a continuous potential well, f, g are continuous and asymptotically linear as t→∞. The existence of a positive solution and ground state solution are established via variational methods.
作者 Lei-ga Zhao
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第3期511-522,共12页 应用数学学报(英文版)
基金 the National Natural Science Foundation of China(No.1063103) Science Fund For Creative Research Groups of National Natural Science Foundation of China(No.10721101).
关键词 Elliptic system ground state solution variational methods concentration-compactness principle Elliptic system, ground state solution, variational methods, concentration-compactness principle
  • 相关文献

参考文献15

  • 1Clement, P.H., de Fegueiredo, D.G., Mitedieri, E. Positive solutions of semilinear elliptic systems. Comm. Part. Diff. Eqns., 17:923-940 (1992)
  • 2Costa, D.G., Magalhaes, C.A. A Unified Approach to Strongly Indefinite Functionals. J. Diff. Eqns., 122: 521 547 (1996)
  • 3Ding, Y.H., Lee, C. Multiple solutions of Schrodinger equations with indefinite linear part and super or asymptotically linear terms. J. Diff. Eqns., 222:137-163 (2006)
  • 4de Figueiredo, D.G., Felmer, P. On Superquadratic Elliptic Systems. Trans. Amer. Math. Soc., 102: 188-207 (1994)
  • 5de Figueiredo, D.G., Yang, J.F. Decay, symmetry and existence of solutions to semilinear elliptic systems. Nonl. Anal. T.M.A., 33:211-234 (1998)
  • 6Hulshof, J., Van Der Vorst, R. Differential systems with strongly indefinite variational structure. J. Funct. Anal., 114:32-58 (1993)
  • 7Jeanjean, L. On the existence of bounded Palais-Smale sequence and application to a Landesman-Lazer type problem set on R^N. Proc. Roy. Soc. Edinburgh Sect. A 129:787-809 (1999)
  • 8Li, G.B., Szulkin, A. An asymptotically periodic Schrodinger equation with indefinite linear part. Commun. Contemp. Math., 4:763-776 (2002)
  • 9Li, G.B., Yang, J.F. Asymptotically linear elliptic systems. Comm. Part. Diff. Eqns., 29:925-954 (2004)
  • 10Lions, P.L. The concentration-compactness principle in the calculus of variations. The locally compact case, Ⅰ, Ⅱ. Ann. Inst. H. Poincar Anal Non Linaire, 1: 109-145, 223-283 (1984).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部