期刊文献+

有限域上的弱自对偶正规基 被引量:1

On Weakly Self-dual Normal Bases over Finite Fields
下载PDF
导出
摘要 对有限域上的弱自对偶正规基的乘法表的特征进行了刻画,并对其复杂度进行了研究,得到了在几种不同类型的有限域扩张时此类正规基的下界描述.例如,若q为素数幂,E=F_q^n为q元域F=F_q的n次扩张,N={a_i=a^q~i|i=0,1,…,n-1}为E在F上的一组弱自对偶正规基,其对偶基由β=ca_r生成,其中c∈F~*,0≤r≤n-1,则当r≠0,n/2时,N的复杂度C_N为偶数且C_N≥4n-2. This paper studies the complexity of weakly self-dual normal bases over finite fields.The authors characterize when a normal bases is weakly self-dual through simple criteria on its the multiplication table.As a consequences of this result,the authors prove various lower bounds for the complexity of weakly self-dual normal bases.For example, suppose that a weakly self-dual normal basis N of Fq^n over Fq is generated by a and its dual basis generated byαr=α^q^r.It is proved that the complexity of N is even and is at least 4n-2,provided that r≠0 or n/2.
作者 廖群英 孙琦
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第4期479-484,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10671137) 国家教育部博士点科研专项基金(No.20060636001)资助的项目.
关键词 有限域 正规基 弱自对偶正规基 乘法表 复杂度 Finite fields Normal bases Weakly self-dual normal bases Multiplication tables Complexity
  • 相关文献

参考文献12

  • 1Mullin R., Onyszchuk I., Vanstone S. and Wilson R., Optimal normal bases in GF(p^n) [J], Discrete Applied Math., 1988-1989, 22:149-161.
  • 2Blake I., Gao X. H., Mullin R., Vanstone S. and Yaghoobian T., Applications of Finite Fields [M], Boston Dordrecht, Lancaster: Kluwer Academic Publishers, 1993.
  • 3Lidl R. and Niederreiter H., Finite Fields [M], Cambrige: Cambrige University Press, 1987.
  • 4Agnew G., Mullin R., Onyszchuk I. and Vanstone S., An implementation for a fast public key cryptosystem [J], J. of Cryptology, 1991, 3:63-79.
  • 5Rosati T., A high speed data encryption processor for public key cryptography [C], Proc. of IEEE Custom Integrated Circuites Conference, San Diego: The Institute of Electrical and Electronics Engineers, Inc., 1989, 3(12)1-5.
  • 6Gao X. H. and Lenstra H. W., Optimal normal bases [J], Disigns, Codes and Cryptology, 1992, 2:315-323.
  • 7孙琦.关于有限域上正规基乘法表的一个算法[J].四川大学学报(自然科学版),2003,40(3):442-446. 被引量:6
  • 8廖群英,孙琦.有限域上最优正规基的乘法表[J].数学学报(中文版),2005,48(5):947-954. 被引量:8
  • 9Wang C., An algorithm to design finite field multipliers using a self-dual normal basis [J], IEEE Trans. Comput., 1989, 38:1457-1460.
  • 10Jungnickel D., Menezes A. and Vanstone S., On the number of self-dual bases of GF(q^n) over GF(q) [J], Proc. Math. Soc., 1990, 109:23-29.

二级参考文献26

  • 1Ash D. Blake I. Vanstone S. Low comolexitv normal bases[ J ]. Discrete Applied Math, 1989, 25: 191- 210.
  • 2Mullin R, Onyszchuk I, Vanstone S, et al. Optimal normal bases in GF( p^n) [J]. Discrete Applied Math., 1988/1989, 22. 149-161.
  • 3Lidl R, Niederreiter H. Finite Fields[ M]. Cambridge University Press, 1987.
  • 4Blake I, Gao Xuhong, Mullin R, et al. Applications of Finite Fields[M]. Kluwer Academic Publishers, 1993.
  • 5Agnew G, Mullin R,Onyszchuk I,et al. An implementation for a fast public key cryptosystem[J]. J of Cryptology,1991, 3:63 - 79.
  • 6Rosati T. A high speed data encryption processor for public key cryptography, Proc[C]. of IEEE Custom Integrated Circuits Conference, San Diego, 1989. 12.3.1 - 12.3.5.
  • 7Mullin R., Onyszchuk I., Vanstone S., Wilson R., Optimal normal bases in GF(pn), Discrete Applied Math.,1988/1989, 22: 149-161.
  • 8Blake I., Gao S., Mullin R., Vanstone S., Yaghoobian T., Applications of finite fields, Kluwer: Kluwer Academic Publishers, 1993.
  • 9Lidl R., Niederreiter H., Finite fields, Cambrige: Cambrige University Press, 1987.
  • 10Agnew G., Mullin R., Onyszchuk I., Vanstone S., An implementation for a fast public key cryptosystem, J.of Cryptology, 1991, 3: 63-79.

共引文献11

同被引文献11

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部