期刊文献+

微伸缩的热弹性力学方程组柯西问题解的奇性传播

Propagation of Singularities of Solutions for Cauchy Problems of Thermoelastic Systems for Microstretch Materials
下载PDF
导出
摘要 用频率分析对角化的方法,研究了一维线性微伸缩的热弹性力学方程组柯西问题解的奇性传播规律.首先从微局部观点出发,利用拟微分算子将双曲抛物的耦合方程组弱解耦.然后利用经典的双曲抛物方程理论和穿梭法,证明了柯西问题解的奇性传播具有有限传播速度、解的奇性沿双曲算子的零次特征带进行传播. The propagation of singularities of solutions to the Cauchy problems of a linear thermoelastic system for microstretch materials in one space variable is studied by using an argument of frequencies analysis.Firstly,by using pseudodifferential operators,the coupled thermoelastic system for microstretch materials will be decoupled microlocally.Secondly, by using a classical bootstrap argument,the property of finite propagation speeds of singularities for the linear thermoelastic system is obtained.Finally,it is also shown that the microlocal weak singularities are propagated along the null bicharacteristics of the hyperbolic operators of the coupled system.
出处 《数学年刊(A辑)》 CSCD 北大核心 2008年第4期531-542,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10771055) 湖南省自然科学基金(No.07JJ3007)资助的项目.
关键词 微伸缩的热弹性力学方程组 柯西问题 奇性传播 Thermoelastic systems of microstretch materials Cauchy problems Propagation of singularities
  • 相关文献

参考文献19

  • 1Ciarletta M. and Iesan D., Non-classical elastic solids [M]// Pitman Reseach Notes in Mathematics Series 293, New York: Longman Scientific & Technical, 1993.
  • 2Eringen A. C., Microcontinuum Field Theories [M], Berlin: Springer-Verlag, 1999.
  • 3Eringen A. C., Theory of thermo-microstretch elastic solids [J], Int. J. Engrg. Sci., 1990, 28:1291 1301.
  • 4Grot R., Thermodynamics of a continuum with microstructure [J], Int. J. Engrg. Sci., 1969, 7:801 814.
  • 5Iesan D. and Quintanilla R., On a theory of thermoelasticity with microtemperatures [J], J. Thermal Stresses, 2000, 23:199 215.
  • 6Iesan D., On a theory of micromorphic elastic solids with microtemperatures [J], J. Thermal Stresses, 2001, 24:737-752.
  • 7Casas P. S. and Quintanilla R., Exponential stability in thermoelasticity with microtemperatures [J], Int. J. Engry. Sci., 2005, 43:33-47.
  • 8Dafermos C. M. and Hsiao L., Development of singularities in solutions of the equations of nonlinear thermoelasticity [J], Quart. Appl. Math., 1986, 44:463-474.
  • 9Chen S. and Wang Y. G., Propagation of singularities of solutions to hyperbolic- parabolic coupled system [J], Math. Nachr., 2002, 242:46-60.
  • 10Racke R. and Wang Y. G., Propagation of singularities in one-dimensional thermoelastieity [J], J. Math. Anal. Appl., 1998, 223:216-247.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部