期刊文献+

利用FDTD方法计算具有涂层腔体之散射场 被引量:1

Calculation of the Scattering Fields of the Coated Cavities by Using the FDTD Method
下载PDF
导出
摘要 利用FDTD方法计算了具有涂层腔体之散射场。其中考虑了腔体的两种模型,一种是S形模型(或称为后端倾斜方形模型),另一种是终端含有中心锥和叶片的圆筒形模型。 In this paper, the scattering fields of the coated cavities are calculated by using the FDTD methed. Two models of cavity are considered. One is the S-shaped inlet and the other one is the cylindrical inlet, involving a termination with a hub and four blades,
机构地区 西北工业大学
出处 《电波科学学报》 EI CSCD 1997年第4期436-438,457,共4页 Chinese Journal of Radio Science
基金 国防预研基金 航空基金
关键词 飞机 进气道 涂层腔体 散射场 雷达截面 FDTD法 FDTD method, Coated cavity, Scattering field, Radar cross section (RCS)
  • 相关文献

同被引文献11

  • 1王朝甫,方大纲.积分方程的多重网格解法及其在天线分析中的应用[J].电波科学学报,1995,10(1):53-56. 被引量:6
  • 2Vlatko Cingoski, Naoki Miyamoto, Hideo Yamashita. Element-free Galerkin method for electromagnetic field computations [J]. IEEE Transactions on Magnetics, 1998, 34(5); 3236-3239.
  • 3S L Ho, S Yang, J M Machado, etal.. Application of a meshless method in electromagnetics [J]. IEEE Transactions on Magnetics, 2001, 37 (5): 3198-3202.
  • 4Belytschko T, Krongauz Y, D Orgn, etal.. Meshless methods: An overview and recent developments [J].Comput. Methods Appl. Mech. Engrg, 1996, 139(1-4): 3-48.
  • 5Aaluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computational modeling and simulation [J]. Modeling Simulation in Engrg, 1998, 3(3): 187-196.
  • 6Atluri S N, Shen S. The meshless local Petrov Galer kin (MLPG) method: a simple & less costly alterna tive to the finite element and boundary element methods [J]. Computer Modeling in Engineering & Science, 2002, 3(1):11-53.
  • 7Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements [J], Comput Methods Appl. Mech.Engrg, 1996, 131(1-2): 133-145,
  • 8Chen T, Raju I S. A coupled finite element and meshless local Petrov-Galerkin method for two-dimensionalpotential problems [J]. Comput Methods Appl.Mech. Engrg, 2003, 192(41-42). 4533-4550.
  • 9Wagner G J, Liu W K. Hierarchical enrichment for bridging scales and mesh-free boundary conditions [J]. Int. J. Numer. Engrg, 2001, 50(3): 507-524.
  • 10Hegen D. Element-free Galerkin methods in combination with finite element approaches [J]. Comput MethodsAppl Mech. Engrg, 1996, 135(1-2): 143-166.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部