期刊文献+

MR评估在体血管壁切应力的方法探讨

In vivo MR evaluation of the vessel wall shear stress in the common carotid artery
原文传递
导出
摘要 目的研究一种临床适用的MR技术在体无创性评估颈总动脉血管壁切应力(WSS)的方法。方法选取1名健康志愿者,对其右侧颈总动脉行相位对比法MR血流定量扫描,应用三维抛物面(3DP)模型函数拟合方法,结合图像后处理技术,计算局部WSS,获取颈总动脉的血管横截面积、平均血流速度、最大速度及瞬时血流率等血流动力学参数,综合评估颈总动脉的血流动力学状态。结果颈总动脉局部WSS值范围为(0.75±0.41)N/m^2;平均血流速度为(23.4±12.0)cm/s,血管横截面积为(32.2±2.9)mm^2;血流率为(7.8±4.6)ml/s。结论MR血流定量技术结合3DP模型方法可以对颈动脉局部WSS大小、分布和变化进行评估。 Objective To apply a non-invasive and feasible method for the quantification of local wall shear stress (WSS) in vivo using magnetic resonance imaging. Methods The right common carotid artery of a young healthy male volunteer was examined using cine phase-contrast MR sequence. The crosssectional area, average flow velocity, maximum velocity and flow rate were obtained. Three dimensional paraboloid model was applied to measure WSS value at common carotid artery. Results The mean/peak WSS was (0. 75 ± 0. 41 ) N/m^2 for the common carotid artery; The mean (range) velocity was (23.4 ±12.0) era/s; The mean (range) luminal vessel area was (32.2±2.9) mm^2; The blood flow rate was (7. 8 ±4. 6) ml/s; Conclusion WSS's magnitude, distribution and changes can be determined by MR imaging combining with the three-dimensional paraboloid method.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2008年第8期854-857,共4页 Chinese Journal of Radiology
基金 “十五”国家科技攻关资助项目(2004BA714B06-02) “十一五”国家科技支撑计划重点资助项目(2007BA105B07) 首都医学发展研究基金资助项目(2005-2026)
关键词 磁共振成像 颈动脉 MR技术 临床分析 Magnetic resonance imaging Carotid arteries
  • 相关文献

参考文献22

  • 1Zarins CK, Giddens DP, Bharadvaj BK, et al. Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res, 1983, 53 : 502-514.
  • 2Ku DN, Giddens DP, Zarins CK, et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation : positive correlation between plaque location and low and oscillating shear stress. Atherosclerosis, 1985, 5:293-302.
  • 3Glagov S, Zarins C, Giddens DP, et aL Hemodynamics and athercsclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med, 1988, 112: 1018-1031.
  • 4Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Bio Sci, 1971, 177:109-159.
  • 5Fry DL Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res, 1968,22 : 165-197.
  • 6Friedman MH, Hutchins GM, Bargeron CB, et al. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis, 1981, 39:425-436.
  • 7Oyre S, Ringgaard S, Kozerke S, et al. Quantitation of circumferential subpixel vessel wall position and wall shear stress by multiple sectored three-dimensional paraboloid modeling of velocity encoded cine MR. Magn Reson Med, 1998, 40: 645-655.
  • 8Oyre S, Paaske WP, Ringgaard S. Automatic accurate non- invasive quantitation of blood flow, cross-sectional vessel area, and wall shear stress by modelling of magnetic resonance velocity data. Eur J Vasc Endovasc Surg,1998, 16: 517-524.
  • 9Papaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods(Review). Hellenic J Cardiol, 2005, 46 : 9-15.
  • 10Levesque M J, Nerem RM. The elongation and orientation of cultured endothelial ceils in response to shear stress. J Biomech Eng, 1985,107 : 341-347.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部