期刊文献+

STABILITY OF SWITCHED POLYNOMIAL SYSTEMS 被引量:2

STABILITY OF SWITCHED POLYNOMIAL SYSTEMS
原文传递
导出
摘要 This paper investigates the stability of (switched) polynomial systems. Using semi-tensor product of matrices, the paper develops two tools for testing the stability of a (switched) polynomial system. One is to convert a product of multi-variable polynomials into a canonical form, and the other is an easily verifiable sufficient condition to justify whether a multi-variable polynomial is positive definite. Using these two tools, the authors construct a polynomial function as a candidate Lyapunov function and via testing its derivative the authors provide some sufficient conditions for the global stability of polynomial systems.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2008年第3期362-377,共16页 系统科学与复杂性学报(英文版)
基金 This research is supported partly by the National Natural Science Foundation of China under Grant Nos.60674022,60736022,and 60221301.
关键词 Global asymptotical stability semi-tensor product switched polynomial systems 转换多项式系统 全局渐近稳定性 半张量积 非线性控制系统
  • 相关文献

参考文献11

  • 1B. Hajer and B. B. Naceur, Homogeneous Lyapunov functions for polynimial systems: a tensor product approach, The 6th IEEE International Conference on Control and Automation, 2007,1911-1915.
  • 2R. T. M'Closkey and R. M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Trans. Aut. Contr., 1997, 42(5): 614-628.
  • 3L. Rosier, Homogeneous Lyapunov function for homogeneous continuous vector field, Sys. Contr. Lett., 1992, 19(6): 467-473.
  • 4L. Grune, Homogeneous state feedback stabilization of homogeneous systems, SIAM J. Control Optimal, 2000, 38(4): 1288-1308.
  • 5E. P. Ryan, Universal stabilization of a class of nonlinear systems with homogeneous vector fields, Sys. Contr. Lett., 1995, 26(3): 177-184.
  • 6D. Cheng and C. Martin, Stabilization of nonlinear systems via designed center manifold, IEEE Trans. Aut. Contr., 2001, 46(9): 1372-1383.
  • 7D. Cheng, Matrix and Polynomial Approach to Dynamic Control Systems, Science Press, Beijing, 2002.
  • 8D. Cheng and H. Qi, Semi-Tensor Product of Matrices--Theory and Applications, Science Press, Beijing, 2007.
  • 9J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition), John Wiley & Sons, New York, 1999.
  • 10J. W. Brewer, Kronecker product and mattrix calculus in system theory, IEEE Trans. Circ. Sys., 1978, 25(9): 772-781.

同被引文献34

引证文献2

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部