期刊文献+

混合边界条件下的三维定常旋转Navier-Stokes方程的原始变量有限元计算

THE FINITE ELEMENT METHOD OF THE THREE DIMENSIONAL STATIONARY ROTATING NAVIER-STOKES EQUATIONS IN THE PRIMITIVE VARIABLES WITH MIXED BOUNDARY CONDITIONS
原文传递
导出
摘要 本文利用原始变量有限元法求解混合边界条件下的三维定常旋转Navier-Stokes方程,证明了离散问题解的存在唯一性,得到了有限元解的最优误差估计.给出了求解原始变量有限元逼近解的简单迭代算法,并证明了算法的收敛性.针对三维情况下计算资源的限制,采用压缩的行存储格式存储刚度矩阵的非零元素,并利用不完全的LU分解作预处理的GMRES方法求解线性方程组.最后分析了简单迭代和牛顿迭代的优劣对比,数值算例表明在同样精度下简单迭代更节约计算时间. In this paper, we adopt the finite element method to solve the three dimensional station- ary rotating Navier-Stokes Equations in primitive variables with mixed boundary conditions. The existence and uniqueness of the approximate problem are showed, and the optimal error estimate is obtained. We give the simple iterative algorithm for the approximate problem, and prove the convergence of this algorithm. To overcome the restriction of the computer resource in the case of three dimension, we use the compressed sparse row format to store the stiff matrix. Then the GMRES method with an incomplete LU preconditioner is adopted to solve the linear system of equations. We analyze the advantage of the simple iterative method over Newton method at last. The numerical examples show that the more computational time has saved by the simple iterative method than the Newton method.
作者 苏剑 李开泰
机构地区 西安交通大学
出处 《计算数学》 CSCD 北大核心 2008年第3期235-246,共12页 Mathematica Numerica Sinica
基金 973项目(2005CB32703) 国家自然科学基金项目(50306019 10571142 10471109 10471110)资助.
关键词 旋转Navier—Stokes方程 原始变量有限元 简单迭代 最优误差估计 Rotating Navier-Stokes equations, Finite Element Method, Simple iterative method, Optimal error estimate
  • 相关文献

参考文献12

  • 1Glowinski R. Finite Element Methods for Incompressible Viscous Flow[M]. North-Holland, 2003.
  • 2Katamine E, Azegami H, Tsubata T et al. Solution to shape optimization problems of viscous flow fields[J], international Journal of Computational fluid Dynamics, 2005, 19(1): 45-51.
  • 3Heywood J G, Rannacher R, Turek S. Artificial Boundaries and Flux and Pressure Conditions for the Incompressible Navier-Stokes Equations[J]. International Journal for Numerical Methods in Fluid, 1996, 22: 325-352.
  • 4Li K T, Su J, Gao L M. Optimal Shape Design for Blade's Surface of a Impeller via the Navier- Stokes Equations[J]. Commun. Numer. Meth. Engng, 2006, 22: 657-676.
  • 5Temam R. Navier-Stokes Equations[M]. North-Holland, Amsterdam, New York, 1984.
  • 6Girault V, Raviart P A. Finite Element Method for Navier-Stokes Equations Theory and Algorithms[M]. Springer-Verlag, Berlin Heidelberg, 1986.
  • 7苏剑,李开泰.混合边界条件下的定常旋转Navier-Stokes方程[J].西安交通大学学报,2006,40(2):231-234. 被引量:2
  • 8Kucera P, Skaldk Z. Local Solutions to the Navier-Stokes Equations with Mixed Boundary Conditions[J]. Acta Applicandae Mathematicae, 1998, 54: 257-288.
  • 9Kracmar S, Neustupa J. A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions[J]. Nonlinear Analysis-Theory Methods & Applications, 2001, 47(6): 4169-4180.
  • 10Codina R, Soto S. Finite element solution of the Stokes problem with dominating coriolis force[J]. Comput. Methods Appl. Mech. Engrg. 1997, 142: 215-234.

二级参考文献5

  • 1Glowinski R.Finite element methods for incompressible viscous flow[M].Amsterdam,Netherlands:North-Holland,2003.
  • 2Katamine E,Azegami H,Tsubata T,et al.Solution to shape optimization problems of viscous flow fields[J].International Journal of Computational Fluid Dynamics,2005,19(1):45-51.
  • 3Heywood J G,Rannacher R,Turek S.Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations[J].International Journal for Numerical Methods in Fluid,1996,22(5):325-352.
  • 4李开泰,黄艾香,黄庆怀.有限元方法及其应用(下)[M].西安:西安交通大学出版社,1988.
  • 5Kracmar S,Neustupa J.A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions[J].Nonlinear Analysis-Theory Methods & Applications,2001,47(6):4169-4180.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部