期刊文献+

新非单调线搜索规则的Lampariello修正对角稀疏拟牛顿算法 被引量:10

GLOBAL CONVERGENCE RESULTS OF LAMPARIELLO MODIFIED DIAGONAL-SPARSE QUASI-NEWTON METHOD WITH NEW NON-MONOTONE STEP SIZE RULE
原文传递
导出
摘要 本文设计了求解无约束最优化问题的新的非单调线搜索规则的Lampariello修正对角稀疏拟牛顿算法.新的步长规则类似于Grippo非单调线搜索规则并包含Grippo非单调线搜索规则作为特例.新的步长规则在每一次线搜索时得到一个相对于Grippo非单调线搜索规则的较大步长,同时保证算法的全局收敛性.数值例子表明算法是有效的,适合求解大规模问题. We propose a new non-monotone step size rule and analyze the global convergence of a Lampariello modified diagonal-sparse quasi-Newton method. The new step size rule is similar to the Grippo non-monotone step size rule and contains it as a special case. We can choose a larger stepsize in each line search procedure and maintain the global convergence property of our Lampariello modified diagonal-sparse quasi-Newton method. Numerical results show that the new algorithms are efficient.
出处 《计算数学》 CSCD 北大核心 2008年第3期255-268,共14页 Mathematica Numerica Sinica
基金 国家自然科学基金(10571106)资助项目 中国石油大学博士基金(Y040804).
关键词 非线性规划 对角稀疏拟牛顿算法 非单调线搜索 收敛 Non-linear programming, diagonal-sparse quasi-Newton method, non-monotonestep size rule, Convergence
  • 相关文献

参考文献3

二级参考文献21

  • 1Miele A, Cantrell J W. Study on a memory gradient method for the minimization of functions. Journal of Oi~timization Theory and Applications, 1969, 3(6): 457-470.
  • 2Cragg E E, Levy A V. Study on a memory gradient method for the minimization of functions. Journal of Optimization Theory and Applications, 1969, 4(3): 191-205.
  • 3Grippo L, Lampariello F, Lucidi S. A nonmonotone line search technique for newton's method. SIAM Journal on Numerical Analysis, 1986, 23(4): 707-716.
  • 4Armijo L. Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific Journal of Mathematics, 1966, 16:1-3.
  • 5Touati-Ahmed D, Storey C. Efficient hybrid conjugate gradient techniques. Journal of Optimization Theory and Applications, 1990, 64 (2): 379-397.
  • 6Barzilai J and Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8: 141-148.
  • 7Raydan M. On the Barzilai and Borwein choice of steplength for the gradient method. IMA Jouvanl of Numerical Analysis, 1993, 13: 321-326.
  • 8Raydan M and Svaiter B F. Relaxed steepest descent and Cauchy-Barzilai-Borwein method. Computational Optimization and Applications, 2002, 21: 155-167.
  • 9Yuhong Dai, Jinyun Yuan, and Ya-XiangYuan: Modified two-point stepsize gradient methods for unconstrained optimization. Computational Optimization and Applications, 2002, 22: 103-109.
  • 10Raydan M. The Barzilai and Borwein gradient method for large scale unconstrained minimization problems. SIAM J. Optim., 1997, 7(1): 26-33.

共引文献58

同被引文献64

  • 1孙清滢.GLOBAL CONVERGENCE RESULTS OF A THREE TERM MEMORY GRADIENT METHOD WITH A NON-MONOTONE LINE SEARCH TECHNIQUE[J].Acta Mathematica Scientia,2005,25(1):170-178. 被引量:12
  • 2袁亚湘.信赖域方法的收敛性[J].计算数学,1994,16(3):333-346. 被引量:60
  • 3赵云彬,易正俊.伪Newton-δ族的导出和全局收敛性[J].数值计算与计算机应用,1995,16(1):53-62. 被引量:17
  • 4时贞军,孙国.无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学,2006,26(1):101-112. 被引量:32
  • 5Wei Zengxin, Li Guoyin, Qi Liqun. New quasi-Newton methods for unconstrained optimization problems[J]. Applied Mathematics and Computation, 2006, 175: 1156-1188.
  • 6Zhang H.C., Hager W.W. A nonmonotone line search technique and its application to unconstrained optimization[J]. SIAM JournM on Optimization, 2004, 14: 1043-1056.
  • 7Zhou Weijun, Zhang Li. Global convergence of the nonmonotone BFGS method for nonvex unconstrained minimizatijon[J]. Journal of Computational and Applied Mathe matics, 2009, 223: 40-47.
  • 8Shi Zhenjun, Shen Jie. Convergence of nonmonotone line search method[J]. Journal of Computational and Applied Mathematics, 2006, 193: 397-412.
  • 9Li D.H., Fukushima M. A modefied BFGS method and its global convergence in non- convex minimization[J]. Journal of Computational Applied Mathematics, 2001, 129: 15-35.
  • 10Touati-Ahmed D. and Storey C. Efficient hybrid conjugate gradient techniques[J]. Journal of Optimization Theory and Application, 1990, 64(2): 379-397.

引证文献10

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部