期刊文献+

透平机械内部三维可压缩Navier-Stokes方程的流面方法和维数分裂算法 被引量:2

The Stream Surface Method and Dimension Split Method for 3D Viscous Compressible Flow in Turbomachinery
原文传递
导出
摘要 在这篇文章中,运用经典的张量分析方法,把流动区域用一个二维流形序列分割成一系列流层之并,推得在流层内半测地坐标之下的Navier-Stokes方程,在流形的法线方向应用向后Euler差分,推导了两维流形上的可压缩Navier-Stokes方程,和流函数满足的方程.在这个基础上,提出了一种维数分裂法的新算法.这种方法不同于区域分解法.对于三维问题,在区域分解法中我们必须在每个子区域上仍解三维问题,但是在这种新方法中,只需要在每个子区域上求解二维问题,不过是几个二维流形上的NS方程.文中还给出了一个透平机械内部流动的数值计算实例. In this paper, 3D-flow domain is decomposed into a series of thin stream flow layers by a series of 2D-manifolds(surface) using calssical tensor anslysis method. Applied Euler backward difference scheme along normal direction to manifold, the compressible Navier-Stokes equations on the 2D-manifold are derived. Accoding to this idea, a dimension split method is proposed.this method is different from the classical domain decomposition method, in which one must solve a 3D problem into each subdomain, but in our method we only solve a 2D-subproblem on 2D manifold, which is a quasi-Navier-Stokes equations on 2D manifold. In addition, the paper provide several numerical examples for turbomachinary flow.
出处 《应用数学学报》 CSCD 北大核心 2008年第3期397-418,共22页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571142 10771167 10471110)资助项目.
关键词 流层 流面 维数分裂法 NAVIER-STOKES方程 透平机械流动 stream layer stream surface dimension split method Navier-Stokes equations turbomachinery flow
  • 相关文献

参考文献1

二级参考文献17

  • 1[1]Li Kaitai, Huang Aixiang. Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control[J]. Comp Meth Appl Mech and Eng 41, 1983,175-194.
  • 2[2]李开泰, 黄艾香.张量分析极其应用 [M].西安交通大学出版社, 1984.
  • 3[3]David GEbin, Jerrold Marsden. Groups of diffeomorphism and the motion of an incompressible fluid[J].Ann of Math(2),1970,92:102-163.
  • 4[4]Hale LK, Ruagel G. Reaction diffusion equations on thin domains[J]. J Math Pures Appl, 1992,71(a):33-95.
  • 5[5]Hale LK, Ruagel G. A dampled hyperbolic equations on thin domains[J]. Tran Amer Math Soc,1992,329(b):185-219.
  • 6[6]Raugel G, Sell G. Navier-Stokes equations on thin 3D domains.I:Global attractors and global regularity of solutions[J]. J Amer Math Society, 1993,6:503-568.
  • 7[7]Raugel G, Sell G. Navier-Stokes equations on thin 3D domains.Ⅱ: Global regularity of spatially periodic conditions[M]. New York and London, College de France Proceedings,Pitman Res. Notes Math Ser,Pitman,1992.
  • 8[8]Moise I, T emamR, Ziane M. Asymptotic analysis of the Navier-Stokes equations in thin domain[J]. Topoi Methods Nonlinear Anal, 1997,10:249-282.
  • 9[9]Teman R, Ziane M. The Navier-Stokes equations in three-dimensinal yhin domains with various boundary conditions[J]. Advances in Differential Equations,1996, 1(4):499-546.
  • 10[10]Teman R, Ziane M. Navier-Stokes equations in thin spherical domains[J]. Contemp Math, 1997,209:281-314.

共引文献4

同被引文献14

  • 1Li,Kaitai(李开泰),Huang,Aixiang(黄艾香).THE NAVIER-STOKES EQUATIONS IN STREAM LAYER AND ON STREAM SURFACE AND A DIMENSION SPLIT METHODS[J].Academic Journal of Xi'an Jiaotong University,2002(2):89-100. 被引量:5
  • 2石东洋,梁慧.一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推[J].计算数学,2005,27(4):369-382. 被引量:75
  • 3LI Kaitai, HUANG Aixiang. Mathematical aspect of the stream-function equations of compressible turbomachinery flow and their finite element approximation using optimal control [J]. Comp Mech Appl Mech and Eng, 1983,41(2) :175-194.
  • 4LI Kaitai, HUANG Aixiang, ZHANG Wenling. A dimension split method for the 3-D compressible Navier-Stokes equations in turbomachine [J]. Communications in Numerical Methods in Engineering, 2002,18 (1):1-14.
  • 5LI Kaitai, JIA Huilian. The Navier-Stokes equations on stream surface and its dimension split method [J]. Acta Math Sci, 2008,28A(2) :266-282.
  • 6BABUSKA I. Error bounds for finite element method[J]. Numer Math, 1971,16:322-333.
  • 7BREZZI F. On the existence uniqueness and approximation of saddle-point problem arising from Lagrang- Jan multipliers [J]. SIAM J Mumer Anal, 1974, 13: 185-197.
  • 8LI Kaitai, SU Jian, GAO Limin. Optimal shape design for blade's surface of an impeller via the Navier-Stokes equations [J]. Communications in Numerical Methods in Engineering, 2006,22(6) :657-676.
  • 9HATHAWAY M D, CHRISS R M, WOOD J R, et al. Experimental and computational investigation of the NASA low speed centrifugal compressor flow field [J]. ASME Journal of Turbomachinery, 1993, 115 (3) : 527-542.
  • 10李开泰,贾惠莲.流面上的Navier-Stokes方程及其维数分裂方法[J].数学物理学报(A辑),2008,28(2):266-282. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部