摘要
研究了一类具有脉冲的二阶非线性时滞微分方程(r(t)x′(t))′-p(t)x′(t)+sum from i=1 to n qi(t)x(t-σ_i+f(t)=0,t≠t_k,x(t_k^+)-x(t_k)=a_kx(t_k),x′(t_k^+)-x′(t_k)=b_kx′(t_k),k∈Z^+的解的渐近性,并得到了一系列相关的充分条件.
This paper studies the asymptotic behavior of solutions of the seond-order non-linear delay differential equations with impulses (r(t)x′(t))′-p(t)x′(t)+i=1∑qi(t)x(t-σi)+f(t)=0, t≠k, x(tk^+)-x(tk)=akx(tk),x′(tk^+)-x′(tk)=bkx′(tk),k∈Z^+ and some sufficient conditions are obtained.
出处
《应用数学学报》
CSCD
北大核心
2008年第3期432-439,共8页
Acta Mathematicae Applicatae Sinica
关键词
渐近性
二阶非线性时滞微分方程
脉冲
asymptotic behavior,second-order nonlinear delay differential equations,impulses