期刊文献+

一类具有脉冲的非线性时滞微分方程解的渐进性 被引量:2

Asymptotic Behavior of Solutions of Nonlinear Delay Differential Equations with Impulse
原文传递
导出
摘要 研究了一类具有脉冲的二阶非线性时滞微分方程(r(t)x′(t))′-p(t)x′(t)+sum from i=1 to n qi(t)x(t-σ_i+f(t)=0,t≠t_k,x(t_k^+)-x(t_k)=a_kx(t_k),x′(t_k^+)-x′(t_k)=b_kx′(t_k),k∈Z^+的解的渐近性,并得到了一系列相关的充分条件. This paper studies the asymptotic behavior of solutions of the seond-order non-linear delay differential equations with impulses (r(t)x′(t))′-p(t)x′(t)+i=1∑qi(t)x(t-σi)+f(t)=0, t≠k, x(tk^+)-x(tk)=akx(tk),x′(tk^+)-x′(tk)=bkx′(tk),k∈Z^+ and some sufficient conditions are obtained.
作者 张雄 黄利航
出处 《应用数学学报》 CSCD 北大核心 2008年第3期432-439,共8页 Acta Mathematicae Applicatae Sinica
关键词 渐近性 二阶非线性时滞微分方程 脉冲 asymptotic behavior,second-order nonlinear delay differential equations,impulses
  • 相关文献

参考文献3

  • 1Liu X, Shen J. Asymptotic Behavior of Solutions of Impulsive Neutral Differential Equations. J. Appl. Math. Lett., 1999, 12:51 58
  • 2Zhao A, Yan J. Asymptotic Behavior of Solutions of Impulsive Delay Differential Equations. J. Math. Anal. Appl., 1996, 201:943-954
  • 3Wen L, Chen Y. Razumikhin Type Theorems for Functional Differential Equations with Impulsive. Dynamics of Continuous and Impulsive Systems, 1999, 6:389-400

同被引文献13

  • 1Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 2Shen J,Yu J.Asymptotic behavior of solutions of neutral differential equations with positive and negative coefficients[J].J.Math.Anal.Appl,1995,195:517-526.
  • 3Zhao A M,Yan J R.Asymptotic behavior of solutions of impulsive delay differential equations[J].J.Math.Anal.Appl,1996,201:943-954.
  • 4Wen L,Chen Y.Razumikhin type theorems for functional differential equations with impulses[J].Dynamics of continuous and impulsive systems,1999,6:389-400.
  • 5Jiao J,Chen L,Li M.Asymptotic behavior of solutions of second-order nonlinear impulsive differential equations[J].J.Math.Anal.Appl,2008,337:458-463.
  • 6Tang X S.Asymptotic behavior of solutions of second-order nonlinear delay differentialequations with impulses[J].J.Comput.Appl.Math,2010,9:2105-2111.
  • 7Liu X Z,Shen J H.Asymptotic behavior of solutions of impulsive neutral differential equations[J].Appl.Math.Lett.,1999,12:51-58.
  • 8薛亚奎,解博丽,宋妮.非线性脉冲扰动下带强迫项的次线性时滞微分系统解的渐近性[J].数学的实践与认识,2007,37(21):165-170. 被引量:1
  • 9陈志彬,张爱平,李蓓.一类变系数泛函微分方程的振动性与渐近性[J].湖南工业大学学报,2008,22(2):29-31. 被引量:1
  • 10屈英.二阶非线性微分方程的渐近性[J].数学的实践与认识,2008,38(21):237-240. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部